Abstract

We demonstrate hybrid femtosecond/picosecond (fs/ps) coherent anti-Stokes Raman scattering for high-speed thermometry in unsteady high-temperature flames, including successful comparisons with a time- and frequency- resolved theoretical model. After excitation of the N2 vibrational manifold with 100fs broadband pump and Stokes beams, the Raman coherence is probed using a frequency-narrowed 2.5ps probe beam that is time delayed to suppress the nonresonant background by 2 orders of magnitude. Experimental spectra were obtained at 500Hz in steady and pulsed H2–air flames and exhibit a temperature precision of 2.2% and an accuracy of 3.3% up to 2400K. Strategies for real-time gas-phase thermometry in high-temperature flames are also discussed, along with implications for kilohertz-rate measurements in practical combustion systems.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Roy, W. D. Kulatilaka, D. R. Richardson, R. P. Lucht, and J. R. Gord, Opt. Lett. 34, 3857 (2009).
    [CrossRef] [PubMed]
  2. T. X. Yi and E. J. Gutmark, J. Eng. Gas Turb. Power 129, 31 (2007).
    [CrossRef]
  3. S. Roy, J. R. Gord, and A. K. Patnaik, Prog. Energy Combust. Sci. 36, 280 (2010).
    [CrossRef]
  4. T. R. Meyer, S. Roy, and J. R. Gord, Appl. Spectrosc. 61, 1135 (2007).
    [CrossRef] [PubMed]
  5. D. Pestov, X. Wang, D. Cristancho, K. R. Hall, A. V. Sokolov, and M. O. Scully, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CTuI2.
    [PubMed]
  6. B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, J. Chem. Phys. 125, 044502 (2006).
    [CrossRef]
  7. R. D. Hancock, K. E. Bertagnolli, and R. P. Lucht, Comb. Flame 109, 323 (1997).
    [CrossRef]

2010

S. Roy, J. R. Gord, and A. K. Patnaik, Prog. Energy Combust. Sci. 36, 280 (2010).
[CrossRef]

2009

2007

T. X. Yi and E. J. Gutmark, J. Eng. Gas Turb. Power 129, 31 (2007).
[CrossRef]

T. R. Meyer, S. Roy, and J. R. Gord, Appl. Spectrosc. 61, 1135 (2007).
[CrossRef] [PubMed]

2006

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, J. Chem. Phys. 125, 044502 (2006).
[CrossRef]

1997

R. D. Hancock, K. E. Bertagnolli, and R. P. Lucht, Comb. Flame 109, 323 (1997).
[CrossRef]

Bertagnolli, K. E.

R. D. Hancock, K. E. Bertagnolli, and R. P. Lucht, Comb. Flame 109, 323 (1997).
[CrossRef]

Chakraborty, A.

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, J. Chem. Phys. 125, 044502 (2006).
[CrossRef]

Cristancho, D.

D. Pestov, X. Wang, D. Cristancho, K. R. Hall, A. V. Sokolov, and M. O. Scully, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CTuI2.
[PubMed]

Gord, J. R.

Gutmark, E. J.

T. X. Yi and E. J. Gutmark, J. Eng. Gas Turb. Power 129, 31 (2007).
[CrossRef]

Hall, K. R.

D. Pestov, X. Wang, D. Cristancho, K. R. Hall, A. V. Sokolov, and M. O. Scully, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CTuI2.
[PubMed]

Hancock, R. D.

R. D. Hancock, K. E. Bertagnolli, and R. P. Lucht, Comb. Flame 109, 323 (1997).
[CrossRef]

Kulatilaka, W. D.

Lucht, R. P.

Meyer, T. R.

Patnaik, A. K.

S. Roy, J. R. Gord, and A. K. Patnaik, Prog. Energy Combust. Sci. 36, 280 (2010).
[CrossRef]

Pestov, D.

D. Pestov, X. Wang, D. Cristancho, K. R. Hall, A. V. Sokolov, and M. O. Scully, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CTuI2.
[PubMed]

Prince, B. D.

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, J. Chem. Phys. 125, 044502 (2006).
[CrossRef]

Prince, B. M.

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, J. Chem. Phys. 125, 044502 (2006).
[CrossRef]

Richardson, D. R.

Roy, S.

Scully, M. O.

D. Pestov, X. Wang, D. Cristancho, K. R. Hall, A. V. Sokolov, and M. O. Scully, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CTuI2.
[PubMed]

Sokolov, A. V.

D. Pestov, X. Wang, D. Cristancho, K. R. Hall, A. V. Sokolov, and M. O. Scully, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CTuI2.
[PubMed]

Stauffer, H. U.

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, J. Chem. Phys. 125, 044502 (2006).
[CrossRef]

Wang, X.

D. Pestov, X. Wang, D. Cristancho, K. R. Hall, A. V. Sokolov, and M. O. Scully, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CTuI2.
[PubMed]

Yi, T. X.

T. X. Yi and E. J. Gutmark, J. Eng. Gas Turb. Power 129, 31 (2007).
[CrossRef]

Appl. Spectrosc.

Comb. Flame

R. D. Hancock, K. E. Bertagnolli, and R. P. Lucht, Comb. Flame 109, 323 (1997).
[CrossRef]

J. Chem. Phys.

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, J. Chem. Phys. 125, 044502 (2006).
[CrossRef]

J. Eng. Gas Turb. Power

T. X. Yi and E. J. Gutmark, J. Eng. Gas Turb. Power 129, 31 (2007).
[CrossRef]

Opt. Lett.

Prog. Energy Combust. Sci.

S. Roy, J. R. Gord, and A. K. Patnaik, Prog. Energy Combust. Sci. 36, 280 (2010).
[CrossRef]

Other

D. Pestov, X. Wang, D. Cristancho, K. R. Hall, A. V. Sokolov, and M. O. Scully, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CTuI2.
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Fs/ps hybrid CARS system with pump ( ω 1 ), Stokes ( ω 2 ), probe ( ω 3 ), and CARS ( ω CARS ) beams and probe delay, τ 23. : 1 / 2 WP, half-wave plate; TFP, thin-film polarizer; and SHG, second-harmonic-generation crystal.

Fig. 2
Fig. 2

Normalized 500 Hz CARS spectra for Φ = 0.7 and probe delay of (a) 0 ps and (b) 2.36 ps . Solid curve is the best-fit theoretical simulation with suppressed nonresonant interference, and open symbols are experimental data. T Eq is the theoretical equilibrium prediction.

Fig. 3
Fig. 3

Probability density functions of best-fit flame temperature for Φ of (a) 0.7 and (b) 1.0, compared with temperatures from equilibrium theory, T Eq .

Fig. 4
Fig. 4

Temperature time series from fundamental-to-hot-band-area ratio correlation for 500 Hz hybrid CARS spectra (a) at various Φ and (b) in a pulsed flame.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I CARS ( ω , τ 12 , τ 23 ) = | P NR ( 3 ) ( ω , τ 12 , τ 23 ) + P Res ( 3 ) ( ω , τ 12 , τ 23 ) | 2 ,
R ( t ) = m , n κ n m P ( m ) e i ω n m t Γ n m t ,
P ( 3 ) ( t , τ 12 , τ 23 ) = ( i ) 3 0 d t 3 0 d t 2 0 d t 1 { R ( t 2 ) δ ( t 1 ) δ ( t 3 ) E 3 ( t t 3 ) E 2 * ( t + τ 23 t 3 t 2 ) × E 1 ( t + τ 23 + τ 12 t 3 t 2 t 1 ) e i ( ω 1 ω 2 + ω 3 ) t 3 e i ( ω 1 ω 2 ) t 2 e i ω 1 t 1 } ,

Metrics