Abstract

We show that multiple-shear spectral shearing interferometry can overcome the relative phase ambiguity of disjoint spectral components that is present in single-shear approaches. By upconverting the unknown pulse with spatially chirped ancillae, we achieve a shear-to-space mapping that can be acquired on an imaging spectrometer. A subset of this continuous range of shears can be chosen for robust and accurate phase retrieval using a multiple-shear algorithm.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Nisoli, S. D. Silvestri, and O. Svelto, Appl. Phys. Lett. 68, 2793 (1996).
    [CrossRef]
  2. M. Stratmann, T. Pagel, and F. Mitschke, Phys. Rev. Lett. 95, 143902 (2005).
    [CrossRef] [PubMed]
  3. J. Sohn, Appl. Phys. Lett. 81, 13 (2002).
    [CrossRef]
  4. J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
    [CrossRef]
  5. K. D. Rector and M. D. Fayer, Int. Rev. Phys. Chem. 17, 261 (1998).
    [CrossRef]
  6. D. Keusters, H. Tan, P. O’Shea, E. Zeek, R. Trebino, and W. Warren, J. Opt. Soc. Am. B 20, 2226 (2003).
    [CrossRef]
  7. C. Iaconis and I. A. Walmsley, Opt. Lett. 23, 792 (1998).
    [CrossRef]
  8. M. Lelek, F. Louradour, A. Barthélémy, C. Froehly, T. Mansourian, L. Mouradian, J.-P. Chambaret, G. Chériaux, and B. Mercier, J. Opt. Soc. Am. B 25, A17 (2008).
    [CrossRef]
  9. J. R. Birge, R. Ell, and F. X. Kärtner, Opt. Lett. 31, 2063 (2006).
    [CrossRef] [PubMed]
  10. W. P. de Boeij, M. S. Pshenichnikov, and D. A. Wiersma, Chem. Phys. 233, 287 (1998).
    [CrossRef]
  11. K. Sundermann and R. de Vivie-Riedle, J. Chem. Phys. 110, 1896 (1999).
    [CrossRef]
  12. D. R. Austin, T. Witting, and I. A. Walmsley, J. Opt. Soc. Am. B 26, 1818 (2009).
    [CrossRef]
  13. S.-P. Gorza, P. Wasylczyk, and I. A. Walmsley, Opt. Express 15, 15168 (2007).
    [CrossRef] [PubMed]
  14. T. Witting, D. R. Austin, and I. A. Walmsley, Opt. Express 17, 18983 (2009).
    [CrossRef]
  15. Z. Wang, E. Zeek, R. Trebino, and P. Kvam, Opt. Express 11, 3518 (2003).
    [CrossRef] [PubMed]

2009

2008

2007

2006

J. R. Birge, R. Ell, and F. X. Kärtner, Opt. Lett. 31, 2063 (2006).
[CrossRef] [PubMed]

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

2005

M. Stratmann, T. Pagel, and F. Mitschke, Phys. Rev. Lett. 95, 143902 (2005).
[CrossRef] [PubMed]

2003

2002

J. Sohn, Appl. Phys. Lett. 81, 13 (2002).
[CrossRef]

1999

K. Sundermann and R. de Vivie-Riedle, J. Chem. Phys. 110, 1896 (1999).
[CrossRef]

1998

C. Iaconis and I. A. Walmsley, Opt. Lett. 23, 792 (1998).
[CrossRef]

K. D. Rector and M. D. Fayer, Int. Rev. Phys. Chem. 17, 261 (1998).
[CrossRef]

W. P. de Boeij, M. S. Pshenichnikov, and D. A. Wiersma, Chem. Phys. 233, 287 (1998).
[CrossRef]

1996

M. Nisoli, S. D. Silvestri, and O. Svelto, Appl. Phys. Lett. 68, 2793 (1996).
[CrossRef]

Austin, D. R.

Barthélémy, A.

Birge, J. R.

Chambaret, J.-P.

Chériaux, G.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

de Boeij, W. P.

W. P. de Boeij, M. S. Pshenichnikov, and D. A. Wiersma, Chem. Phys. 233, 287 (1998).
[CrossRef]

de Vivie-Riedle, R.

K. Sundermann and R. de Vivie-Riedle, J. Chem. Phys. 110, 1896 (1999).
[CrossRef]

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Ell, R.

Fayer, M. D.

K. D. Rector and M. D. Fayer, Int. Rev. Phys. Chem. 17, 261 (1998).
[CrossRef]

Froehly, C.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Gorza, S.-P.

Iaconis, C.

Kärtner, F. X.

Keusters, D.

Kvam, P.

Lelek, M.

Louradour, F.

Mansourian, T.

Mercier, B.

Mitschke, F.

M. Stratmann, T. Pagel, and F. Mitschke, Phys. Rev. Lett. 95, 143902 (2005).
[CrossRef] [PubMed]

Mouradian, L.

Nisoli, M.

M. Nisoli, S. D. Silvestri, and O. Svelto, Appl. Phys. Lett. 68, 2793 (1996).
[CrossRef]

O’Shea, P.

Pagel, T.

M. Stratmann, T. Pagel, and F. Mitschke, Phys. Rev. Lett. 95, 143902 (2005).
[CrossRef] [PubMed]

Pshenichnikov, M. S.

W. P. de Boeij, M. S. Pshenichnikov, and D. A. Wiersma, Chem. Phys. 233, 287 (1998).
[CrossRef]

Rector, K. D.

K. D. Rector and M. D. Fayer, Int. Rev. Phys. Chem. 17, 261 (1998).
[CrossRef]

Silvestri, S. D.

M. Nisoli, S. D. Silvestri, and O. Svelto, Appl. Phys. Lett. 68, 2793 (1996).
[CrossRef]

Sohn, J.

J. Sohn, Appl. Phys. Lett. 81, 13 (2002).
[CrossRef]

Stratmann, M.

M. Stratmann, T. Pagel, and F. Mitschke, Phys. Rev. Lett. 95, 143902 (2005).
[CrossRef] [PubMed]

Sundermann, K.

K. Sundermann and R. de Vivie-Riedle, J. Chem. Phys. 110, 1896 (1999).
[CrossRef]

Svelto, O.

M. Nisoli, S. D. Silvestri, and O. Svelto, Appl. Phys. Lett. 68, 2793 (1996).
[CrossRef]

Tan, H.

Trebino, R.

Walmsley, I. A.

Wang, Z.

Warren, W.

Wasylczyk, P.

Wiersma, D. A.

W. P. de Boeij, M. S. Pshenichnikov, and D. A. Wiersma, Chem. Phys. 233, 287 (1998).
[CrossRef]

Witting, T.

Zeek, E.

Appl. Phys. Lett.

M. Nisoli, S. D. Silvestri, and O. Svelto, Appl. Phys. Lett. 68, 2793 (1996).
[CrossRef]

J. Sohn, Appl. Phys. Lett. 81, 13 (2002).
[CrossRef]

Chem. Phys.

W. P. de Boeij, M. S. Pshenichnikov, and D. A. Wiersma, Chem. Phys. 233, 287 (1998).
[CrossRef]

Int. Rev. Phys. Chem.

K. D. Rector and M. D. Fayer, Int. Rev. Phys. Chem. 17, 261 (1998).
[CrossRef]

J. Chem. Phys.

K. Sundermann and R. de Vivie-Riedle, J. Chem. Phys. 110, 1896 (1999).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

M. Stratmann, T. Pagel, and F. Mitschke, Phys. Rev. Lett. 95, 143902 (2005).
[CrossRef] [PubMed]

Rev. Mod. Phys.

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

SEA-CAR-SPIDER concept: test pulse (TP), spatially chirped ancillae A and B, with local frequencies ω A and ω B increasing along the arrows, and sum-frequency beams TP + A and TP + B . The coordinate system used in the text is shown. The entrance slit of the imaging spectrometer is parallel to the x axis; the x axis is reversed here by the reimaging of the crystal plane.

Fig. 2
Fig. 2

Individual spectra of upconverted replicas in (a) the A arm and (b) the B arm; (c) SEA-CAR-SPIDER trace.

Fig. 3
Fig. 3

(a) Measured spectral phase (left axis) using multiple-shear SEA-CAR-SPIDER (solid curve) and SI (dashed curve) and the disagreement between the two (dotted curve, right axis). (b) Spectral intensity.

Fig. 4
Fig. 4

Error matrix E for (a) single-lobed spectrum, single-shear reconstruction; (b) double-lobed spectrum, single-shear reconstruction; (c) double-lobed spectrum, multiple-shear reconstruction. The color scale ranges from 0 rad (white) to 0.3 rad (black).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S ( ω , x ) = | E ( ω ω A ) | 2 + | E ( ω ω B ) | 2 + 2 | E ( ω ω A ) | | E ( ω ω B ) | · cos [ ϕ ( ω ω B ) ϕ ( ω ω A ) + θ ω up x c ] .
Γ ( ω , x ) η ( x ) = ϕ ( ω + Ω ( x ) ) ϕ ( ω ) .

Metrics