Abstract
We develop light-driven optoelectronic tweezers based on the organic photoconductive material titanium oxide phthalocyanine. These tweezers function based on negative dielectrophoresis (nDEP). The dynamic manipulation of a single microparticle and cell patterning are demonstrated by using this light-driven optoelectronic DEP chip. The adaptive light patterns that drive the optoelectronic DEP onchip are designed by using Flash software to approach appropriate dynamic manipulation. This is also the first reported demonstration, to the best of our knowledge, for successfully patterning such delicate cells from human hepatocellular liver carcinoma cell line HepG2 by using any optoelectronic tweezers.
© 2010 Optical Society of America
Full Article | PDF ArticleOSA Recommended Articles
Shuailong Zhang, Adele Nikitina, Yujie Chen, Yanfeng Zhang, Lin Liu, Andrew G. Flood, Joan Juvert, M. Dean Chamberlain, Nazir P. Kherani, Steven L. Neale, and Aaron R. Wheeler
Opt. Express 26(5) 5300-5309 (2018)
Alicja Zarowna-Dabrowska, Steven L. Neale, David Massoubre, Jonathan McKendry, Bruce R. Rae, Robert K. Henderson, Mervyn J. Rose, Huabing Yin, Jonathan M. Cooper, Erdan Gu, and Martin D. Dawson
Opt. Express 19(3) 2720-2728 (2011)
Wei Wang, Yen-Heng Lin, Ruei-Syuan Guan, Ten-Chin Wen, Tzung-Fang Guo, and Gwo-Bin Lee
Opt. Express 17(20) 17603-17613 (2009)