Abstract

We developed a Michelson-type cavity to achieve coherent combining of two quantum-cascade lasers, emitting at around 4.5μm. We report a cw combining efficiency of 85% (up to 91% near threshold) with good beam quality (M2<1.4). Despite the interferometric nature of the coupling mechanism, this type of cavity can withstand disturbance from the laboratory environment without significant power fluctuations. Finally, the spectral behavior and the output power dependence on current are explored.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Faist, Science 264, 553 (1994).
    [CrossRef] [PubMed]
  2. M. Razeghi, IEEE J. Sel. Top. Quantum Electron. 15, 941 (2009).
    [CrossRef]
  3. T. Fan, IEEE J. Sel. Top. Quantum Electron. 11, 567 (2005).
    [CrossRef]
  4. A. Shirakawa, T. Saitou, T. Sekiguchi, and K.-i. Ueda, Opt. Express 10, 1167 (2002).
    [PubMed]
  5. M. Fridman, Opt. Lett. 32, 790 (2007).
    [CrossRef] [PubMed]
  6. Q. Peng, Opt. Lett. 30, 1485 (2005).
    [CrossRef] [PubMed]
  7. D. Sabourdy, IEEE J. Sel. Top. Quantum Electron. 10, 1033 (2004).
    [CrossRef]
  8. D. Sabourdy, Opt. Express 11, 87 (2003).
    [CrossRef] [PubMed]
  9. E. Palik, Handbook of Optical Constants of Solids(Academic, 1985).

2009 (1)

M. Razeghi, IEEE J. Sel. Top. Quantum Electron. 15, 941 (2009).
[CrossRef]

2007 (1)

2005 (2)

Q. Peng, Opt. Lett. 30, 1485 (2005).
[CrossRef] [PubMed]

T. Fan, IEEE J. Sel. Top. Quantum Electron. 11, 567 (2005).
[CrossRef]

2004 (1)

D. Sabourdy, IEEE J. Sel. Top. Quantum Electron. 10, 1033 (2004).
[CrossRef]

2003 (1)

2002 (1)

1994 (1)

J. Faist, Science 264, 553 (1994).
[CrossRef] [PubMed]

Faist, J.

J. Faist, Science 264, 553 (1994).
[CrossRef] [PubMed]

Fan, T.

T. Fan, IEEE J. Sel. Top. Quantum Electron. 11, 567 (2005).
[CrossRef]

Fridman, M.

Palik, E.

E. Palik, Handbook of Optical Constants of Solids(Academic, 1985).

Peng, Q.

Razeghi, M.

M. Razeghi, IEEE J. Sel. Top. Quantum Electron. 15, 941 (2009).
[CrossRef]

Sabourdy, D.

D. Sabourdy, IEEE J. Sel. Top. Quantum Electron. 10, 1033 (2004).
[CrossRef]

D. Sabourdy, Opt. Express 11, 87 (2003).
[CrossRef] [PubMed]

Saitou, T.

Sekiguchi, T.

Shirakawa, A.

Ueda, K.-i.

IEEE J. Sel. Top. Quantum Electron. (3)

M. Razeghi, IEEE J. Sel. Top. Quantum Electron. 15, 941 (2009).
[CrossRef]

T. Fan, IEEE J. Sel. Top. Quantum Electron. 11, 567 (2005).
[CrossRef]

D. Sabourdy, IEEE J. Sel. Top. Quantum Electron. 10, 1033 (2004).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Science (1)

J. Faist, Science 264, 553 (1994).
[CrossRef] [PubMed]

Other (1)

E. Palik, Handbook of Optical Constants of Solids(Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup of the Michelson cavity: OC, output coupler; BS, beam splitter; CL, collimation lens; QCL 1 , 2 , HR-AR coated QCLs.

Fig. 2
Fig. 2

Output power versus input current: triangles, output (P); squares, output (Q); solid curve, sum of the two individual QCLs. Inset: combining efficiency η versus current.

Fig. 3
Fig. 3

External cavity spectrum of a single QCL (dashed curve) and Michelson setup (solid curve).

Fig. 4
Fig. 4

Michelson cavity output powers versus one QCL current (other QCL: I = 400 mA ): triangles, output (P); squares, output (Q).

Fig. 5
Fig. 5

Wavelength-dependent factors in the Michelson resonator.

Metrics