Abstract

We propose a compact polarization-independent output grating coupler, which consists of T-shaped grooves. For only 20 periods on a silicon-on-insulator wafer with a 260nm thick top silicon layer, the output coupling efficiencies for both the TE and the TM modes are larger than 50% in the wavelength range of 1480–1580nm and are approximately 58% around 1550nm. The polarization-dependent loss of the device is within 0.05dB in the range of 15101580nm.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Balslev and A. Kristensen, Opt. Express 13, 344 (2005).
    [CrossRef] [PubMed]
  2. C. A. Barrios, V. R. Almeida, and M. Lipson, J. Lightwave Technol. 21, 1089 (2003).
    [CrossRef]
  3. M. Galarza, D. V. Thourhout, R. Baets, and M. Lopez-Amo1, Opt. Express 16, 8350 (2008).
    [CrossRef] [PubMed]
  4. G. Niederer, W. Nakagawa, and H. P. Herzig, Opt. Express 13, 2196 (2005).
    [CrossRef] [PubMed]
  5. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, IEEE. J. Quantum Electron 38, 949 (2002).
    [CrossRef]
  6. D. Taillaert, P. Bienstman, and R. Baets, Opt. Lett. 29, 2749 (2004).
    [CrossRef] [PubMed]
  7. D.-X. Xu, P. Cheben, D. Dalacu, A. Delâge, S. Janz, B. Lamontagne, M.-J. Picard, and W. N. Ye, Opt. Lett. 29, 2384 (2004).
    [CrossRef] [PubMed]
  8. D. A. Peyrot, T. V. Galstian, and R. A. Lessard, Proc. SPIE 4833, 719 (2003).
    [CrossRef]
  9. B. Eggleton, C. Kerbage, P. Westbrook, R. Windeler, and A. Hale, Opt. Express 9, 698 (2001).
    [CrossRef] [PubMed]
  10. J. Mu, H. Zhang, and W. Huang, J. Lightwave Technol. 26, 1596 (2008).
    [CrossRef]
  11. K. Okamoto, Fundamentals of Optical Waveguides(Academic, 2000).
  12. S. M. Rytov, Sov. Phys. JETP 2, 466 (1956).
  13. S. P. Pogossian, L. Vescan, and A. Vonsovici, J. Lightwave Technol. 16, 1851 (1998).
    [CrossRef]
  14. P. Lalanne, J. Opt. Soc. Am. A 14, 450 (1997).
    [CrossRef]
  15. E. Kratschmer, D. P. Klaus, R. Viswanathan, M. L. Turnidge, P. L. Reed, and B. McPhail, J. Vac. Sci. Technol. B 27, 2563 (2009).
    [CrossRef]

2009 (1)

E. Kratschmer, D. P. Klaus, R. Viswanathan, M. L. Turnidge, P. L. Reed, and B. McPhail, J. Vac. Sci. Technol. B 27, 2563 (2009).
[CrossRef]

2008 (2)

2005 (2)

2004 (2)

2003 (2)

D. A. Peyrot, T. V. Galstian, and R. A. Lessard, Proc. SPIE 4833, 719 (2003).
[CrossRef]

C. A. Barrios, V. R. Almeida, and M. Lipson, J. Lightwave Technol. 21, 1089 (2003).
[CrossRef]

2002 (1)

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, IEEE. J. Quantum Electron 38, 949 (2002).
[CrossRef]

2001 (1)

1998 (1)

1997 (1)

1956 (1)

S. M. Rytov, Sov. Phys. JETP 2, 466 (1956).

Almeida, V. R.

Baets, R.

M. Galarza, D. V. Thourhout, R. Baets, and M. Lopez-Amo1, Opt. Express 16, 8350 (2008).
[CrossRef] [PubMed]

D. Taillaert, P. Bienstman, and R. Baets, Opt. Lett. 29, 2749 (2004).
[CrossRef] [PubMed]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, IEEE. J. Quantum Electron 38, 949 (2002).
[CrossRef]

Balslev, S.

Barrios, C. A.

Bienstman, P.

D. Taillaert, P. Bienstman, and R. Baets, Opt. Lett. 29, 2749 (2004).
[CrossRef] [PubMed]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, IEEE. J. Quantum Electron 38, 949 (2002).
[CrossRef]

Bogaerts, W.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, IEEE. J. Quantum Electron 38, 949 (2002).
[CrossRef]

Cheben, P.

Daele, P. V.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, IEEE. J. Quantum Electron 38, 949 (2002).
[CrossRef]

Dalacu, D.

Delâge, A.

Eggleton, B.

Galarza, M.

Galstian, T. V.

D. A. Peyrot, T. V. Galstian, and R. A. Lessard, Proc. SPIE 4833, 719 (2003).
[CrossRef]

Hale, A.

Herzig, H. P.

Huang, W.

Janz, S.

Kerbage, C.

Klaus, D. P.

E. Kratschmer, D. P. Klaus, R. Viswanathan, M. L. Turnidge, P. L. Reed, and B. McPhail, J. Vac. Sci. Technol. B 27, 2563 (2009).
[CrossRef]

Kratschmer, E.

E. Kratschmer, D. P. Klaus, R. Viswanathan, M. L. Turnidge, P. L. Reed, and B. McPhail, J. Vac. Sci. Technol. B 27, 2563 (2009).
[CrossRef]

Krauss, T. F.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, IEEE. J. Quantum Electron 38, 949 (2002).
[CrossRef]

Kristensen, A.

Lalanne, P.

Lamontagne, B.

Lessard, R. A.

D. A. Peyrot, T. V. Galstian, and R. A. Lessard, Proc. SPIE 4833, 719 (2003).
[CrossRef]

Lipson, M.

Lopez-Amo1, M.

McPhail, B.

E. Kratschmer, D. P. Klaus, R. Viswanathan, M. L. Turnidge, P. L. Reed, and B. McPhail, J. Vac. Sci. Technol. B 27, 2563 (2009).
[CrossRef]

Mesel, K. D.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, IEEE. J. Quantum Electron 38, 949 (2002).
[CrossRef]

Moerman, I.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, IEEE. J. Quantum Electron 38, 949 (2002).
[CrossRef]

Mu, J.

Nakagawa, W.

Niederer, G.

Okamoto, K.

K. Okamoto, Fundamentals of Optical Waveguides(Academic, 2000).

Peyrot, D. A.

D. A. Peyrot, T. V. Galstian, and R. A. Lessard, Proc. SPIE 4833, 719 (2003).
[CrossRef]

Picard, M.-J.

Pogossian, S. P.

Reed, P. L.

E. Kratschmer, D. P. Klaus, R. Viswanathan, M. L. Turnidge, P. L. Reed, and B. McPhail, J. Vac. Sci. Technol. B 27, 2563 (2009).
[CrossRef]

Rytov, S. M.

S. M. Rytov, Sov. Phys. JETP 2, 466 (1956).

Taillaert, D.

D. Taillaert, P. Bienstman, and R. Baets, Opt. Lett. 29, 2749 (2004).
[CrossRef] [PubMed]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, IEEE. J. Quantum Electron 38, 949 (2002).
[CrossRef]

Thourhout, D. V.

Turnidge, M. L.

E. Kratschmer, D. P. Klaus, R. Viswanathan, M. L. Turnidge, P. L. Reed, and B. McPhail, J. Vac. Sci. Technol. B 27, 2563 (2009).
[CrossRef]

Verstuyft, S.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, IEEE. J. Quantum Electron 38, 949 (2002).
[CrossRef]

Vescan, L.

Viswanathan, R.

E. Kratschmer, D. P. Klaus, R. Viswanathan, M. L. Turnidge, P. L. Reed, and B. McPhail, J. Vac. Sci. Technol. B 27, 2563 (2009).
[CrossRef]

Vonsovici, A.

Westbrook, P.

Windeler, R.

Xu, D.-X.

Ye, W. N.

Zhang, H.

IEEE. J. Quantum Electron (1)

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, IEEE. J. Quantum Electron 38, 949 (2002).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. A (1)

J. Vac. Sci. Technol. B (1)

E. Kratschmer, D. P. Klaus, R. Viswanathan, M. L. Turnidge, P. L. Reed, and B. McPhail, J. Vac. Sci. Technol. B 27, 2563 (2009).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Proc. SPIE (1)

D. A. Peyrot, T. V. Galstian, and R. A. Lessard, Proc. SPIE 4833, 719 (2003).
[CrossRef]

Sov. Phys. JETP (1)

S. M. Rytov, Sov. Phys. JETP 2, 466 (1956).

Other (1)

K. Okamoto, Fundamentals of Optical Waveguides(Academic, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Proposed architectures of the gratings. The working principles of the four structures are explained by the light trace. The incident light is propagating along the waveguide close to the left of the above gratings. (a) VSG for TM mode outcoupling, (b) BGR for TE mode resonating, (c) TSG for TM mode outcoupling, and (d) TSG for TE mode outcoupling.

Fig. 2
Fig. 2

The reflectivity and the transmittance of the TE mode versus the period of the BGR with a 220 nm thick top silicon layer.

Fig. 3
Fig. 3

The dashed curve represents the relationship between the grating period of the BGR at the resonance point for the TE mode and the top silicon thickness, and the squares stand for the 1550 nm wavelength resonance points. The solid curve represents the relationship between the period of the VSG for the highest-coupling-efficiency point for TM mode and the top silicon thickness, and the filled circles represent the highest coupling efficiency.

Fig. 4
Fig. 4

(a) Relationship between the coupling efficiency and the wavelength for the TM mode before and after adding the SEG and (b) relationship between the coupling efficiency and the wavelength for the TE mode before and after adding the SEG. The dashed curves stand for structure 1, and the solid curves stand for the TSG.

Fig. 5
Fig. 5

(a) The relationships between the coupling efficiency and the wavelength for both the TE and TM modes: the dashed curve stands for the TE mode, and the solid curve stands for the TM mode. (b) The PDL of the TSG: the dotted curve represents the condition of polarization independence.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

K L + m · K T = β ,
T = m λ n eff TM .
2 a 1 4 < n eff TE λ T < a 2 or a 2 < n eff TE λ T < 2 a + 1 4 ,
n eff TE = f n 1 2 + ( 1 f ) n 2 2 ,

Metrics