Abstract

We address curved IR screens for multiwavelength systems. To first-order of the approximation, a curved screen may be viewed as composed of many local flat screens. On the other hand, the validity of such an approximation is not clear a priori. We provide experiments and simulations to show that such an approximation works well for cylindrically curved IR screens while monitoring their peak transmission as a function of the screen curvature.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. J. Munk, Frequency Selective Surfaces (Wiley, 2000).
    [CrossRef]
  2. G. M. Ressler and K. D. Möller, Appl. Opt. 6, 893 (1967).
    [CrossRef] [PubMed]
  3. R. Ulrich, K. F. Renk, and L. Genzel, IEEE Trans. Microwave Theory Tech. 11, 363 (1963).
    [CrossRef]
  4. O. Sternberg, K. P. Stewart, Y. Hor, A. Bandyopadhyay, J. F. Federici, M. Bornefeld, Y.-L. Mathis, D. Sliwinski, K. D. Möller, and H. Grebel, J. Appl. Phys. 104, 023103 (2008).
    [CrossRef]
  5. R. Mittra, C. H. Chan, and T. Cwik, Proc. IEEE 76, 1593 (1988).
    [CrossRef]
  6. E. A. Parker, B. Philips, and R. J. Langley, IEEE Microw. Guid. Wave Lett. 5, 338 (1995).
    [CrossRef]
  7. Z. Sipus, M. Bosiljevac, and J. Bartolic, in 2008 IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting, APSURSI 2008 (2008), p. 4619216.
  8. R. Li, A. Banerjee, and H. Grebel, Opt. Express 17, 1622 (2009).
    [CrossRef] [PubMed]
  9. A. Banerjee, D. Moeller, and H. Grebel, ECS Trans. 19, 233 (2009).
    [CrossRef]
  10. A. Banerjee, D. Moeller, A. I. Smirnov, and H. Grebel, IEEE Sens. J. 10, 419 (2010).
    [CrossRef]

2010

A. Banerjee, D. Moeller, A. I. Smirnov, and H. Grebel, IEEE Sens. J. 10, 419 (2010).
[CrossRef]

2009

R. Li, A. Banerjee, and H. Grebel, Opt. Express 17, 1622 (2009).
[CrossRef] [PubMed]

A. Banerjee, D. Moeller, and H. Grebel, ECS Trans. 19, 233 (2009).
[CrossRef]

2008

O. Sternberg, K. P. Stewart, Y. Hor, A. Bandyopadhyay, J. F. Federici, M. Bornefeld, Y.-L. Mathis, D. Sliwinski, K. D. Möller, and H. Grebel, J. Appl. Phys. 104, 023103 (2008).
[CrossRef]

1995

E. A. Parker, B. Philips, and R. J. Langley, IEEE Microw. Guid. Wave Lett. 5, 338 (1995).
[CrossRef]

1988

R. Mittra, C. H. Chan, and T. Cwik, Proc. IEEE 76, 1593 (1988).
[CrossRef]

1967

1963

R. Ulrich, K. F. Renk, and L. Genzel, IEEE Trans. Microwave Theory Tech. 11, 363 (1963).
[CrossRef]

Bandyopadhyay, A.

O. Sternberg, K. P. Stewart, Y. Hor, A. Bandyopadhyay, J. F. Federici, M. Bornefeld, Y.-L. Mathis, D. Sliwinski, K. D. Möller, and H. Grebel, J. Appl. Phys. 104, 023103 (2008).
[CrossRef]

Banerjee, A.

A. Banerjee, D. Moeller, A. I. Smirnov, and H. Grebel, IEEE Sens. J. 10, 419 (2010).
[CrossRef]

R. Li, A. Banerjee, and H. Grebel, Opt. Express 17, 1622 (2009).
[CrossRef] [PubMed]

A. Banerjee, D. Moeller, and H. Grebel, ECS Trans. 19, 233 (2009).
[CrossRef]

Bartolic, J.

Z. Sipus, M. Bosiljevac, and J. Bartolic, in 2008 IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting, APSURSI 2008 (2008), p. 4619216.

Bornefeld, M.

O. Sternberg, K. P. Stewart, Y. Hor, A. Bandyopadhyay, J. F. Federici, M. Bornefeld, Y.-L. Mathis, D. Sliwinski, K. D. Möller, and H. Grebel, J. Appl. Phys. 104, 023103 (2008).
[CrossRef]

Bosiljevac, M.

Z. Sipus, M. Bosiljevac, and J. Bartolic, in 2008 IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting, APSURSI 2008 (2008), p. 4619216.

Chan, C. H.

R. Mittra, C. H. Chan, and T. Cwik, Proc. IEEE 76, 1593 (1988).
[CrossRef]

Cwik, T.

R. Mittra, C. H. Chan, and T. Cwik, Proc. IEEE 76, 1593 (1988).
[CrossRef]

Federici, J. F.

O. Sternberg, K. P. Stewart, Y. Hor, A. Bandyopadhyay, J. F. Federici, M. Bornefeld, Y.-L. Mathis, D. Sliwinski, K. D. Möller, and H. Grebel, J. Appl. Phys. 104, 023103 (2008).
[CrossRef]

Genzel, L.

R. Ulrich, K. F. Renk, and L. Genzel, IEEE Trans. Microwave Theory Tech. 11, 363 (1963).
[CrossRef]

Grebel, H.

A. Banerjee, D. Moeller, A. I. Smirnov, and H. Grebel, IEEE Sens. J. 10, 419 (2010).
[CrossRef]

A. Banerjee, D. Moeller, and H. Grebel, ECS Trans. 19, 233 (2009).
[CrossRef]

R. Li, A. Banerjee, and H. Grebel, Opt. Express 17, 1622 (2009).
[CrossRef] [PubMed]

O. Sternberg, K. P. Stewart, Y. Hor, A. Bandyopadhyay, J. F. Federici, M. Bornefeld, Y.-L. Mathis, D. Sliwinski, K. D. Möller, and H. Grebel, J. Appl. Phys. 104, 023103 (2008).
[CrossRef]

Hor, Y.

O. Sternberg, K. P. Stewart, Y. Hor, A. Bandyopadhyay, J. F. Federici, M. Bornefeld, Y.-L. Mathis, D. Sliwinski, K. D. Möller, and H. Grebel, J. Appl. Phys. 104, 023103 (2008).
[CrossRef]

Langley, R. J.

E. A. Parker, B. Philips, and R. J. Langley, IEEE Microw. Guid. Wave Lett. 5, 338 (1995).
[CrossRef]

Li, R.

Mathis, Y. -L.

O. Sternberg, K. P. Stewart, Y. Hor, A. Bandyopadhyay, J. F. Federici, M. Bornefeld, Y.-L. Mathis, D. Sliwinski, K. D. Möller, and H. Grebel, J. Appl. Phys. 104, 023103 (2008).
[CrossRef]

Mittra, R.

R. Mittra, C. H. Chan, and T. Cwik, Proc. IEEE 76, 1593 (1988).
[CrossRef]

Moeller, D.

A. Banerjee, D. Moeller, A. I. Smirnov, and H. Grebel, IEEE Sens. J. 10, 419 (2010).
[CrossRef]

A. Banerjee, D. Moeller, and H. Grebel, ECS Trans. 19, 233 (2009).
[CrossRef]

Möller, K. D.

O. Sternberg, K. P. Stewart, Y. Hor, A. Bandyopadhyay, J. F. Federici, M. Bornefeld, Y.-L. Mathis, D. Sliwinski, K. D. Möller, and H. Grebel, J. Appl. Phys. 104, 023103 (2008).
[CrossRef]

G. M. Ressler and K. D. Möller, Appl. Opt. 6, 893 (1967).
[CrossRef] [PubMed]

Munk, B. J.

B. J. Munk, Frequency Selective Surfaces (Wiley, 2000).
[CrossRef]

Parker, E. A.

E. A. Parker, B. Philips, and R. J. Langley, IEEE Microw. Guid. Wave Lett. 5, 338 (1995).
[CrossRef]

Philips, B.

E. A. Parker, B. Philips, and R. J. Langley, IEEE Microw. Guid. Wave Lett. 5, 338 (1995).
[CrossRef]

Renk, K. F.

R. Ulrich, K. F. Renk, and L. Genzel, IEEE Trans. Microwave Theory Tech. 11, 363 (1963).
[CrossRef]

Ressler, G. M.

Sipus, Z.

Z. Sipus, M. Bosiljevac, and J. Bartolic, in 2008 IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting, APSURSI 2008 (2008), p. 4619216.

Sliwinski, D.

O. Sternberg, K. P. Stewart, Y. Hor, A. Bandyopadhyay, J. F. Federici, M. Bornefeld, Y.-L. Mathis, D. Sliwinski, K. D. Möller, and H. Grebel, J. Appl. Phys. 104, 023103 (2008).
[CrossRef]

Smirnov, A. I.

A. Banerjee, D. Moeller, A. I. Smirnov, and H. Grebel, IEEE Sens. J. 10, 419 (2010).
[CrossRef]

Sternberg, O.

O. Sternberg, K. P. Stewart, Y. Hor, A. Bandyopadhyay, J. F. Federici, M. Bornefeld, Y.-L. Mathis, D. Sliwinski, K. D. Möller, and H. Grebel, J. Appl. Phys. 104, 023103 (2008).
[CrossRef]

Stewart, K. P.

O. Sternberg, K. P. Stewart, Y. Hor, A. Bandyopadhyay, J. F. Federici, M. Bornefeld, Y.-L. Mathis, D. Sliwinski, K. D. Möller, and H. Grebel, J. Appl. Phys. 104, 023103 (2008).
[CrossRef]

Ulrich, R.

R. Ulrich, K. F. Renk, and L. Genzel, IEEE Trans. Microwave Theory Tech. 11, 363 (1963).
[CrossRef]

Appl. Opt.

ECS Trans.

A. Banerjee, D. Moeller, and H. Grebel, ECS Trans. 19, 233 (2009).
[CrossRef]

IEEE Microw. Guid. Wave Lett.

E. A. Parker, B. Philips, and R. J. Langley, IEEE Microw. Guid. Wave Lett. 5, 338 (1995).
[CrossRef]

IEEE Sens. J.

A. Banerjee, D. Moeller, A. I. Smirnov, and H. Grebel, IEEE Sens. J. 10, 419 (2010).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

R. Ulrich, K. F. Renk, and L. Genzel, IEEE Trans. Microwave Theory Tech. 11, 363 (1963).
[CrossRef]

J. Appl. Phys.

O. Sternberg, K. P. Stewart, Y. Hor, A. Bandyopadhyay, J. F. Federici, M. Bornefeld, Y.-L. Mathis, D. Sliwinski, K. D. Möller, and H. Grebel, J. Appl. Phys. 104, 023103 (2008).
[CrossRef]

Opt. Express

Proc. IEEE

R. Mittra, C. H. Chan, and T. Cwik, Proc. IEEE 76, 1593 (1988).
[CrossRef]

Other

B. J. Munk, Frequency Selective Surfaces (Wiley, 2000).
[CrossRef]

Z. Sipus, M. Bosiljevac, and J. Bartolic, in 2008 IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting, APSURSI 2008 (2008), p. 4619216.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Flat metal screen: 7.6 μ m × 7.6 μ m opening, arranged in a square lattice with a 12.7 μ m pitch. (b) A cylindrically curved screen may be constructed by many flat yet tilted screens. R is the radius of screen curvature. The maximum azimuthal angle is θ max . The local incident angle for this flat section is θ i .

Fig. 2
Fig. 2

Experiment (curves are ordered from top to bottom): flat tilted screens. (a) p-polarized incident beam. (b) s-polarized incident beam. The dip in (a) at θ = 0 results from noncollimated incident beam [4].

Fig. 3
Fig. 3

Simulations of tilted flat segments: (a) p-polarized incident beam (the dip as a function of tilt progresses sideways). (b) Dispersion relations for s- and p-pol’s. The peak frequency is plotted as a function of the tilt angle. Experiment, p-pol: red (top and bottom solid linear best fit lines); experiment, s-pol: blue (second solid linear best fit line); simulations, p-pol: black (dashed linear best fit line). The noncollimated IR beam may diverge differently in p and s directions.

Fig. 4
Fig. 4

Transmission through cylindrically curved screens. (a) p-pol incident beam (as the curvature increases so does the frequency gap). (b) s-pol incident beam. The curvature is given in terms of θ max . Curves are ordered from top to bottom.

Fig. 5
Fig. 5

Frequency gap as a function of curvature angle θ max . Red diamonds (with red linear trend line): experimental data for p-pol. Black squares (with dashed black linear trend line): simulations and use of Eq. (4).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

k sp = k o   sin   θ + q G .
ω = ω 0 [ 1 ± C   sin ( θ ) ] .
Δ ω = 2 C ω 0 Σ i   sin ( θ i ) / Σ i θ i .
Δ ω = Σ i δ ω i / i .

Metrics