Abstract

We report on a simple method for retrieving the wavelength dependence of the phase birefringence in a polarization-maintaining fiber or a birefringent crystal from a channeled spectrum. The method utilizes interference of polarized modes or waves resolved as the channeled spectrum and its processing by a windowed Fourier transform to reconstruct precisely the phase as a function of wavelength. The ambiguity of the phase is removed provided that we know both the approximative function for the birefringence dispersion and the length of the fiber or the thickness of the crystal. The method is used in measuring the wavelength dependence of the phase birefringence in an elliptical-core fiber or in a quartz crystal in a range from 500to900nm. The dependences are compared with those resulting from the available data, and very good agreement is confirmed.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. C. Rashleigh, Opt. Lett. 7, 294 (1982).
    [CrossRef] [PubMed]
  2. M. G. Shlyagin, A. V. Khomenko, and D. Tentori, Opt. Lett. 20, 869 (1995).
    [CrossRef] [PubMed]
  3. K. Takada, J. Noda, and R. Ulrich, Appl. Opt. 24, 4387 (1985).
    [CrossRef] [PubMed]
  4. W. J. Bock and W. Urbanczyk, Appl. Opt. 32, 5841 (1993).
    [CrossRef] [PubMed]
  5. P. Hlubina and D. Ciprian, Opt. Express 15, 17019 (2007).
    [CrossRef] [PubMed]
  6. M. Medhat and S. Y. El-Zaiat, Opt. Commun. 141, 145 (1997).
    [CrossRef]
  7. H. Delbarre, M. Przygodzki, C. Tassou, and D. Boucher, Appl. Phys. B 70, 45 (2000).
    [CrossRef]
  8. P. Hlubina, D. Ciprian, and L. Knyblova, Opt. Commun. 260, 535 (2006).
    [CrossRef]
  9. M. Tsubokawa, N. Shibata, T. Higashi, and S. Seikai, J. Opt. Soc. Am. A 4, 1895 (1987).
    [CrossRef]
  10. P. Hlubina, J. Lunacek, D. Ciprian, and R. Chlebus, Opt. Commun. 281, 2349 (2008).
    [CrossRef]
  11. Curve Fitting Toolbox for Use with MATLAB (MathWorks, 2000).
  12. P. Hlubina, D. Ciprian, and M. Kadulova, Meas. Sci. Technol. 20, 025301 (2009).
    [CrossRef]

2009

P. Hlubina, D. Ciprian, and M. Kadulova, Meas. Sci. Technol. 20, 025301 (2009).
[CrossRef]

2008

P. Hlubina, J. Lunacek, D. Ciprian, and R. Chlebus, Opt. Commun. 281, 2349 (2008).
[CrossRef]

2007

2006

P. Hlubina, D. Ciprian, and L. Knyblova, Opt. Commun. 260, 535 (2006).
[CrossRef]

2000

H. Delbarre, M. Przygodzki, C. Tassou, and D. Boucher, Appl. Phys. B 70, 45 (2000).
[CrossRef]

1997

M. Medhat and S. Y. El-Zaiat, Opt. Commun. 141, 145 (1997).
[CrossRef]

1995

1993

1987

1985

1982

Bock, W. J.

Boucher, D.

H. Delbarre, M. Przygodzki, C. Tassou, and D. Boucher, Appl. Phys. B 70, 45 (2000).
[CrossRef]

Chlebus, R.

P. Hlubina, J. Lunacek, D. Ciprian, and R. Chlebus, Opt. Commun. 281, 2349 (2008).
[CrossRef]

Ciprian, D.

P. Hlubina, D. Ciprian, and M. Kadulova, Meas. Sci. Technol. 20, 025301 (2009).
[CrossRef]

P. Hlubina, J. Lunacek, D. Ciprian, and R. Chlebus, Opt. Commun. 281, 2349 (2008).
[CrossRef]

P. Hlubina and D. Ciprian, Opt. Express 15, 17019 (2007).
[CrossRef] [PubMed]

P. Hlubina, D. Ciprian, and L. Knyblova, Opt. Commun. 260, 535 (2006).
[CrossRef]

Delbarre, H.

H. Delbarre, M. Przygodzki, C. Tassou, and D. Boucher, Appl. Phys. B 70, 45 (2000).
[CrossRef]

El-Zaiat, S. Y.

M. Medhat and S. Y. El-Zaiat, Opt. Commun. 141, 145 (1997).
[CrossRef]

Higashi, T.

Hlubina, P.

P. Hlubina, D. Ciprian, and M. Kadulova, Meas. Sci. Technol. 20, 025301 (2009).
[CrossRef]

P. Hlubina, J. Lunacek, D. Ciprian, and R. Chlebus, Opt. Commun. 281, 2349 (2008).
[CrossRef]

P. Hlubina and D. Ciprian, Opt. Express 15, 17019 (2007).
[CrossRef] [PubMed]

P. Hlubina, D. Ciprian, and L. Knyblova, Opt. Commun. 260, 535 (2006).
[CrossRef]

Kadulova, M.

P. Hlubina, D. Ciprian, and M. Kadulova, Meas. Sci. Technol. 20, 025301 (2009).
[CrossRef]

Khomenko, A. V.

Knyblova, L.

P. Hlubina, D. Ciprian, and L. Knyblova, Opt. Commun. 260, 535 (2006).
[CrossRef]

Lunacek, J.

P. Hlubina, J. Lunacek, D. Ciprian, and R. Chlebus, Opt. Commun. 281, 2349 (2008).
[CrossRef]

Medhat, M.

M. Medhat and S. Y. El-Zaiat, Opt. Commun. 141, 145 (1997).
[CrossRef]

Noda, J.

Przygodzki, M.

H. Delbarre, M. Przygodzki, C. Tassou, and D. Boucher, Appl. Phys. B 70, 45 (2000).
[CrossRef]

Rashleigh, S. C.

Seikai, S.

Shibata, N.

Shlyagin, M. G.

Takada, K.

Tassou, C.

H. Delbarre, M. Przygodzki, C. Tassou, and D. Boucher, Appl. Phys. B 70, 45 (2000).
[CrossRef]

Tentori, D.

Tsubokawa, M.

Ulrich, R.

Urbanczyk, W.

Appl. Opt.

Appl. Phys. B

H. Delbarre, M. Przygodzki, C. Tassou, and D. Boucher, Appl. Phys. B 70, 45 (2000).
[CrossRef]

J. Opt. Soc. Am. A

Meas. Sci. Technol.

P. Hlubina, D. Ciprian, and M. Kadulova, Meas. Sci. Technol. 20, 025301 (2009).
[CrossRef]

Opt. Commun.

M. Medhat and S. Y. El-Zaiat, Opt. Commun. 141, 145 (1997).
[CrossRef]

P. Hlubina, D. Ciprian, and L. Knyblova, Opt. Commun. 260, 535 (2006).
[CrossRef]

P. Hlubina, J. Lunacek, D. Ciprian, and R. Chlebus, Opt. Commun. 281, 2349 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Other

Curve Fitting Toolbox for Use with MATLAB (MathWorks, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup to record a channeled spectrum for a PMF or a birefringent crystal.

Fig. 2
Fig. 2

Channeled spectrum recorded for a PMF and the phase error function e ( λ ) obtained by our procedure.

Fig. 3
Fig. 3

Retrieved phase and group birefringences, B ( λ ) and G ( λ ) , for a PMF compared with those measured over a broader spectral range.

Fig. 4
Fig. 4

Channeled spectrum recorded for a birefringent quartz and the phase error function e ( λ ) obtained by our procedure.

Fig. 5
Fig. 5

Retrieved phase and group birefringences, B f ( λ ) and G f ( λ ) , for a birefringent quartz compared with those given by the dispersion relation.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I ( λ ) = I 0 ( λ ) { 1 + V R ( λ ) cos [ ( 2 π λ ) B ( λ ) L ] } ,
B ( λ ) = A 1 λ 4 + A 2 λ 2 + A 3 + A 4 λ 2 + A 5 λ 4 ,
e ( λ ) = Φ r ( λ ) + m 2 π ( 2 π λ ) B ( λ ) L ,

Metrics