Abstract

We propose a novel and compact all-optical tunable filter with embedded preamplifier and channel selector. This filter is based on cross-Raman scattering (XRS) in a silicon nanowire waveguide, suitable for multichannel optical communications. Tuning is performed by means of tuning the pump center wavelength. With this tuning approach the separation between the pump wavelength and that of the desired channel should equal the Raman shift in Si. Spanning over 40 optical communication channels following the ITU-T G.694.1 standard (100GHz grid), our simulation results have demonstrated an excellent channel selectivity and tunabilty for the proposed all-optical filter. The XRS process in Si nanowire has amplified the desired channel by about 11.5±0.38dB, while the suppression ratios for the first and the second neighboring channels are about 28±0.25 and 33.6±0.31dB, respectively.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. L. Wooten, R. L. Stone, E. W. Miles, and E. M. Bradely, J. Lightwave Technol. 14, 2530 (1996).
    [CrossRef]
  2. A. Iocco, H. G. Limberger, L. A. Everall, K. E. Chisholm, J. A. R. Williams, and I. Bennion, J. Lightwave Technol. 17, 1217 (1999).
    [CrossRef]
  3. D. Brooks and S. Ruschin, J. Lightwave Technol. 13, 1508 (1995).
    [CrossRef]
  4. D. Sadot and E. Boimovich, IEEE Commun. Mag. 36, 50 (1998).
    [CrossRef]
  5. B. Jalali, V. Raghunathan, D. Dimitropoulos, and O. Boyraz, IEEE J. Sel. Top. Quantum Electron. 12, 412 (2006).
    [CrossRef]
  6. R. Dekker, N. Usechak, M. Forst, and A. Driessen, J. Phys. D 40, R249 (2007).
    [CrossRef]
  7. S. Abdollahi and M. K. Moravvej-Farshi, Appl. Opt. 48, 2505 (2009).
    [CrossRef] [PubMed]
  8. M. Pantouvaki, C. C. Renaud, P. Cannard, M. J. Robertson, R. G. William, and A. J. Seeds, IEEE J. Sel. Top. Quantum Electron. 13, 1112 (2007).
    [CrossRef]

2009

2007

M. Pantouvaki, C. C. Renaud, P. Cannard, M. J. Robertson, R. G. William, and A. J. Seeds, IEEE J. Sel. Top. Quantum Electron. 13, 1112 (2007).
[CrossRef]

R. Dekker, N. Usechak, M. Forst, and A. Driessen, J. Phys. D 40, R249 (2007).
[CrossRef]

2006

B. Jalali, V. Raghunathan, D. Dimitropoulos, and O. Boyraz, IEEE J. Sel. Top. Quantum Electron. 12, 412 (2006).
[CrossRef]

1999

1998

D. Sadot and E. Boimovich, IEEE Commun. Mag. 36, 50 (1998).
[CrossRef]

1996

E. L. Wooten, R. L. Stone, E. W. Miles, and E. M. Bradely, J. Lightwave Technol. 14, 2530 (1996).
[CrossRef]

1995

D. Brooks and S. Ruschin, J. Lightwave Technol. 13, 1508 (1995).
[CrossRef]

Abdollahi, S.

Bennion, I.

Boimovich, E.

D. Sadot and E. Boimovich, IEEE Commun. Mag. 36, 50 (1998).
[CrossRef]

Boyraz, O.

B. Jalali, V. Raghunathan, D. Dimitropoulos, and O. Boyraz, IEEE J. Sel. Top. Quantum Electron. 12, 412 (2006).
[CrossRef]

Bradely, E. M.

E. L. Wooten, R. L. Stone, E. W. Miles, and E. M. Bradely, J. Lightwave Technol. 14, 2530 (1996).
[CrossRef]

Brooks, D.

D. Brooks and S. Ruschin, J. Lightwave Technol. 13, 1508 (1995).
[CrossRef]

Cannard, P.

M. Pantouvaki, C. C. Renaud, P. Cannard, M. J. Robertson, R. G. William, and A. J. Seeds, IEEE J. Sel. Top. Quantum Electron. 13, 1112 (2007).
[CrossRef]

Chisholm, K. E.

Dekker, R.

R. Dekker, N. Usechak, M. Forst, and A. Driessen, J. Phys. D 40, R249 (2007).
[CrossRef]

Dimitropoulos, D.

B. Jalali, V. Raghunathan, D. Dimitropoulos, and O. Boyraz, IEEE J. Sel. Top. Quantum Electron. 12, 412 (2006).
[CrossRef]

Driessen, A.

R. Dekker, N. Usechak, M. Forst, and A. Driessen, J. Phys. D 40, R249 (2007).
[CrossRef]

Everall, L. A.

Forst, M.

R. Dekker, N. Usechak, M. Forst, and A. Driessen, J. Phys. D 40, R249 (2007).
[CrossRef]

Iocco, A.

Jalali, B.

B. Jalali, V. Raghunathan, D. Dimitropoulos, and O. Boyraz, IEEE J. Sel. Top. Quantum Electron. 12, 412 (2006).
[CrossRef]

Limberger, H. G.

Miles, E. W.

E. L. Wooten, R. L. Stone, E. W. Miles, and E. M. Bradely, J. Lightwave Technol. 14, 2530 (1996).
[CrossRef]

Moravvej-Farshi, M. K.

Pantouvaki, M.

M. Pantouvaki, C. C. Renaud, P. Cannard, M. J. Robertson, R. G. William, and A. J. Seeds, IEEE J. Sel. Top. Quantum Electron. 13, 1112 (2007).
[CrossRef]

Raghunathan, V.

B. Jalali, V. Raghunathan, D. Dimitropoulos, and O. Boyraz, IEEE J. Sel. Top. Quantum Electron. 12, 412 (2006).
[CrossRef]

Renaud, C. C.

M. Pantouvaki, C. C. Renaud, P. Cannard, M. J. Robertson, R. G. William, and A. J. Seeds, IEEE J. Sel. Top. Quantum Electron. 13, 1112 (2007).
[CrossRef]

Robertson, M. J.

M. Pantouvaki, C. C. Renaud, P. Cannard, M. J. Robertson, R. G. William, and A. J. Seeds, IEEE J. Sel. Top. Quantum Electron. 13, 1112 (2007).
[CrossRef]

Ruschin, S.

D. Brooks and S. Ruschin, J. Lightwave Technol. 13, 1508 (1995).
[CrossRef]

Sadot, D.

D. Sadot and E. Boimovich, IEEE Commun. Mag. 36, 50 (1998).
[CrossRef]

Seeds, A. J.

M. Pantouvaki, C. C. Renaud, P. Cannard, M. J. Robertson, R. G. William, and A. J. Seeds, IEEE J. Sel. Top. Quantum Electron. 13, 1112 (2007).
[CrossRef]

Stone, R. L.

E. L. Wooten, R. L. Stone, E. W. Miles, and E. M. Bradely, J. Lightwave Technol. 14, 2530 (1996).
[CrossRef]

Usechak, N.

R. Dekker, N. Usechak, M. Forst, and A. Driessen, J. Phys. D 40, R249 (2007).
[CrossRef]

William, R. G.

M. Pantouvaki, C. C. Renaud, P. Cannard, M. J. Robertson, R. G. William, and A. J. Seeds, IEEE J. Sel. Top. Quantum Electron. 13, 1112 (2007).
[CrossRef]

Williams, J. A. R.

Wooten, E. L.

E. L. Wooten, R. L. Stone, E. W. Miles, and E. M. Bradely, J. Lightwave Technol. 14, 2530 (1996).
[CrossRef]

Appl. Opt.

IEEE Commun. Mag.

D. Sadot and E. Boimovich, IEEE Commun. Mag. 36, 50 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

B. Jalali, V. Raghunathan, D. Dimitropoulos, and O. Boyraz, IEEE J. Sel. Top. Quantum Electron. 12, 412 (2006).
[CrossRef]

M. Pantouvaki, C. C. Renaud, P. Cannard, M. J. Robertson, R. G. William, and A. J. Seeds, IEEE J. Sel. Top. Quantum Electron. 13, 1112 (2007).
[CrossRef]

J. Lightwave Technol.

A. Iocco, H. G. Limberger, L. A. Everall, K. E. Chisholm, J. A. R. Williams, and I. Bennion, J. Lightwave Technol. 17, 1217 (1999).
[CrossRef]

D. Brooks and S. Ruschin, J. Lightwave Technol. 13, 1508 (1995).
[CrossRef]

E. L. Wooten, R. L. Stone, E. W. Miles, and E. M. Bradely, J. Lightwave Technol. 14, 2530 (1996).
[CrossRef]

J. Phys. D

R. Dekker, N. Usechak, M. Forst, and A. Driessen, J. Phys. D 40, R249 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Configuration of a (a) single-stage and (b) double-stage SOI-NW, acting as all-optical Tunable filter.

Fig. 2
Fig. 2

Maximum channel intensity, I CH , versus position along z in the waveguide of Fig. 1a.

Fig. 3
Fig. 3

Spectral characteristics of the filtered channels, at the output of the proposed all-optical filter structure of Fig 1b. Intensities of the undesired channels (CH1, CH2, CH4, and CH5) are multiplied by 500.

Fig. 4
Fig. 4

Variation of the maximum output intensity for the tuned channel (left-hand axis) and the SR for the first and second neighboring channels, SR 1 (right-hand axis) and SR 2 (inset), as spanned from λ CH 1 = 1530.33 nm to λ CH 40 = 1561.42 nm with 0.8 nm ( 100 GHz ) channel spacing.

Tables (1)

Tables Icon

Table 1 Parameter Values Used in the Simulation

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d I P d z ( α p + α FC P ) I P ( α TPA ( I P + 2 i = 1 n I Si ) + i = 1 n G i ( ω p ω Si ) I Si ) × I P ,
d I S j d z = ( α S j + α FC S j ) I S j α TPA ( I S j + 2 i j ( I Si + I p ) ) × I S j + I S j I P G j ,
d N d t = N τ e + α TPA 2 ( I P 2 ω P + i I Si 2 ω Si ) ,
G j = 16 ω s j Γ R 2 ζ R Δ ω j Ω R c n eff j { [ Ω R 2 ( Δ ω j ) 2 ] 2 + 4 Γ R 2 ( Δ ω j ) 2 } ;

Metrics