Abstract

We report a highly efficient method for generation of any high-order nondiffracting Bessel beam employing a phase hologram whose transmittance coincides with the phase modulation of such a beam. It is remarkable that the Bessel beam generated by this hologram, at the plane of this device, has peak amplitude higher than the amplitude of the beam employed to illuminate it.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Durnin, J. Opt. Soc. Am. A 4, 651 (1987).
    [CrossRef]
  2. J. Durnin, J. J. Miceli, Jr., and J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
    [CrossRef] [PubMed]
  3. J. Turunen, A. Vasara, and A. T. Friberg, Appl. Opt. 27, 3959 (1988).
    [CrossRef] [PubMed]
  4. A. Vasara, J. Turunen, and A. T. Friberg, J. Opt. Soc. Am. A 6, 1748 (1989).
    [CrossRef] [PubMed]
  5. A. J. Cox and D. C. Dibble, Appl. Opt. 30, 1330 (1991).
    [CrossRef] [PubMed]
  6. J. A. Davis, J. Guertin, and D. M. Cottrell, Appl. Opt. 32, 6368 (1993).
    [CrossRef] [PubMed]
  7. L. Niggi, T. Lanzi, and M. Maier, J. Opt. Soc. Am. A 14, 27 (1997).
  8. V. Kettunen and J. Turunen, Opt. Lett. 23, 1247 (1998).
    [CrossRef]
  9. W.-X. Cong, N.-X. Chen, and B.-Y. Gu, J. Opt. Soc. Am. A 15, 2362 (1998).
    [CrossRef]
  10. N. Guérineau and J. Primot, J. Opt. Soc. Am. A 16, 293 (1999).
    [CrossRef]
  11. N. Guérineau, B. Harchaoui, J. Primot, and K. Heggarty, Opt. Lett. 26, 411 (2001).
    [CrossRef]
  12. H. Stark, J. Opt. Soc. Am. 69, 1519 (1979).
    [CrossRef]

2001 (1)

1999 (1)

1998 (2)

1997 (1)

1993 (1)

1991 (1)

1989 (1)

1988 (1)

1987 (2)

J. Durnin, J. J. Miceli, Jr., and J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[CrossRef] [PubMed]

J. Durnin, J. Opt. Soc. Am. A 4, 651 (1987).
[CrossRef]

1979 (1)

Chen, N.-X.

Cong, W.-X.

Cottrell, D. M.

Cox, A. J.

Davis, J. A.

Dibble, D. C.

Durnin, J.

J. Durnin, J. J. Miceli, Jr., and J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[CrossRef] [PubMed]

J. Durnin, J. Opt. Soc. Am. A 4, 651 (1987).
[CrossRef]

Eberly, J. H.

J. Durnin, J. J. Miceli, Jr., and J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[CrossRef] [PubMed]

Friberg, A. T.

Gu, B.-Y.

Guérineau, N.

Guertin, J.

Harchaoui, B.

Heggarty, K.

Kettunen, V.

Lanzi, T.

Maier, M.

Miceli, J. J.

J. Durnin, J. J. Miceli, Jr., and J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[CrossRef] [PubMed]

Niggi, L.

Primot, J.

Stark, H.

Turunen, J.

Vasara, A.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Coefficients b m for several values of index m. The order q of the codified Bessel beams are equal to 0 (triangles), 2 (circles), and 4 (squares).

Fig. 2
Fig. 2

Efficiencies η q m of the PHs that encode the Bessel beams J q ( λ m ξ ) exp ( i q θ ) , for beams orders q = 0 (triangles), q = 2 (squares), and q = 4 (circles).

Fig. 3
Fig. 3

Phases of the holograms that encode the beams (a) B 1 ( ξ , θ ) = J 1 ( λ 10 ξ ) exp ( i θ ) and (b) B 2 ( ξ , θ ) = J 2 ( λ 10 ξ ) exp ( i 2 θ ) .

Fig. 4
Fig. 4

Fourier transform amplitudes of the PHs shown in (a) Fig. 3a and (b) Fig. 3b.

Fig. 5
Fig. 5

Amplitudes of the reconstructed fields obtained by filtering the most brilliant rings in the Fourier spectra of (a) Fig. 4a and (b) Fig. 4b.

Fig. 6
Fig. 6

Experimental setup employed for the generation of nondiffracting Bessel beams.

Fig. 7
Fig. 7

Experimental Fourier transform amplitudes of the PHs that encode the beams (a) B 1 ( ξ , θ ) = J 1 ( λ 10 ξ ) exp ( i θ ) and (b) B 2 ( ξ , θ ) = J 2 ( λ 10 ξ ) exp ( i 2 θ ) .

Fig. 8
Fig. 8

Amplitudes of the experimentally generated fields (a) B 1 ( ξ , θ ) = J 1 ( λ 10 ξ ) exp ( i θ ) , and (b) B 2 ( ξ , θ ) = J 2 ( λ 10 ξ ) exp ( i 2 θ ) .

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

B q ( ξ , θ ) = J q ( 2 π α R ξ ) exp ( i q θ )
h q ( ξ , θ ) = sgn [ J q ( 2 π α R ξ ) ] exp ( i q θ ) ,
b n = 2 J q + 1 2 ( λ n ) 0 1 x f ( x ) J q ( λ n x ) d x .
h q ( ξ , θ ) = n = 1 b n J q ( λ n ξ ) exp ( i q θ ) .
2 π α R = λ m
η q m = P h 1 0 2 π 0 1 ξ b m 2 J q 2 ( λ m ξ ) d ξ d θ = 2 b m 2 0 1 ξ J q 2 ( λ m ξ ) d ξ .

Metrics