Abstract

We have studied the enhancement of second-harmonic generation (SHG) from self-assembled monolayers on Au surfaces excited by radially polarized beams. The electric field at the metal surface was enhanced by constructive interference between the incident and the reflected beams due to a longitudinal field, which is the field parallel to the optical axis, generated around the focus by the radially polarized beam. Since even-order nonlinear phenomena are surface sensitive, the combination of SHG and a radially polarized beam has the potential to be a powerful new imaging tool for characterization of metal surfaces. The SHG signal excited by the radially polarized beam was about 3 times higher than that excited by a linearly polarized beam; in addition, the SHG from a 7-(dimethylamino)-4-methylcoumarin-3-isothiocyanate monolayer was about 1.3 times higher than that from a bare Au substrate.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
    [CrossRef]
  2. K. S. Youngworth and T. G. Brown, Opt. Express 7, 77 (2000).
    [CrossRef] [PubMed]
  3. C. J. R. Sheppard and A. Choudhury, Appl. Opt. 43, 4322 (2000).
    [CrossRef]
  4. A. F. Abouraddy and K. C. Toussaint, Jr., Phys. Rev. Lett. 96, 153901 (2006).
    [CrossRef] [PubMed]
  5. B. Sick, B. Hecht, and L. Novotny, Phys. Rev. Lett. 85, 4482 (2000).
    [CrossRef] [PubMed]
  6. K. Yoshiki, M. Hashimoto, and T. Araki, Jpn. J. Appl. Phys. Part 2 44, L1066 (2005).
    [CrossRef]
  7. D. P. Biss and T. G. Brown, Opt. Express 9, 490 (2001).
    [CrossRef] [PubMed]
  8. F. M. Hoffmann, Surf. Sci. Rep. 3, 107 (1983).
    [CrossRef]
  9. D. P. Biss and T. G. Brown, Opt. Lett. 28, 923 (2003).
    [CrossRef] [PubMed]
  10. K. Yoshiki, R. Kanamaru, M. Hashimoto, N. Hashimoto, and T. Araki, Opt. Lett. 32, 1680 (2007).
    [CrossRef] [PubMed]
  11. T. T. Ehler, N. Malmberg, and L. J. Noe, J. Phys. Chem. B 101, 1268 (1997).
    [CrossRef]
  12. M. D. Porter, T. B. Bright, D. L. Allara, and C. E. D. Chidsey, J. Am. Chem. Soc. 109, 3559 (1987).
    [CrossRef]
  13. S. Flink, F. C. J. M. van Veggel, and D. N. Reinhoudt, J. Phys. Org. Chem. 14, 407 (2001).
    [CrossRef]
  14. M. Buck, F. Eisert, J. Fischer, M. Grunze, and F. Träger, Appl. Phys. A 53, 552 (1991).
    [CrossRef]
  15. K. Watanabe, N. Horiguchi, and H. Kano, Appl. Opt. 46, 4985 (2007).
    [CrossRef] [PubMed]
  16. X. D. Zhu, H. Suhr, and Y. R. Shen, Phys. Rev. B 35, 3047 (1987).
    [CrossRef]
  17. D. V. Palanker, G. M. H. Knippels, T. I. Smith, and H. A. Schwettman, Opt. Commun. 148, 215 (1998).
    [CrossRef]

2007 (2)

2006 (1)

A. F. Abouraddy and K. C. Toussaint, Jr., Phys. Rev. Lett. 96, 153901 (2006).
[CrossRef] [PubMed]

2005 (1)

K. Yoshiki, M. Hashimoto, and T. Araki, Jpn. J. Appl. Phys. Part 2 44, L1066 (2005).
[CrossRef]

2003 (1)

2001 (2)

D. P. Biss and T. G. Brown, Opt. Express 9, 490 (2001).
[CrossRef] [PubMed]

S. Flink, F. C. J. M. van Veggel, and D. N. Reinhoudt, J. Phys. Org. Chem. 14, 407 (2001).
[CrossRef]

2000 (4)

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

B. Sick, B. Hecht, and L. Novotny, Phys. Rev. Lett. 85, 4482 (2000).
[CrossRef] [PubMed]

C. J. R. Sheppard and A. Choudhury, Appl. Opt. 43, 4322 (2000).
[CrossRef]

K. S. Youngworth and T. G. Brown, Opt. Express 7, 77 (2000).
[CrossRef] [PubMed]

1998 (1)

D. V. Palanker, G. M. H. Knippels, T. I. Smith, and H. A. Schwettman, Opt. Commun. 148, 215 (1998).
[CrossRef]

1997 (1)

T. T. Ehler, N. Malmberg, and L. J. Noe, J. Phys. Chem. B 101, 1268 (1997).
[CrossRef]

1991 (1)

M. Buck, F. Eisert, J. Fischer, M. Grunze, and F. Träger, Appl. Phys. A 53, 552 (1991).
[CrossRef]

1987 (2)

X. D. Zhu, H. Suhr, and Y. R. Shen, Phys. Rev. B 35, 3047 (1987).
[CrossRef]

M. D. Porter, T. B. Bright, D. L. Allara, and C. E. D. Chidsey, J. Am. Chem. Soc. 109, 3559 (1987).
[CrossRef]

1983 (1)

F. M. Hoffmann, Surf. Sci. Rep. 3, 107 (1983).
[CrossRef]

Abouraddy, A. F.

A. F. Abouraddy and K. C. Toussaint, Jr., Phys. Rev. Lett. 96, 153901 (2006).
[CrossRef] [PubMed]

Allara, D. L.

M. D. Porter, T. B. Bright, D. L. Allara, and C. E. D. Chidsey, J. Am. Chem. Soc. 109, 3559 (1987).
[CrossRef]

Araki, T.

K. Yoshiki, R. Kanamaru, M. Hashimoto, N. Hashimoto, and T. Araki, Opt. Lett. 32, 1680 (2007).
[CrossRef] [PubMed]

K. Yoshiki, M. Hashimoto, and T. Araki, Jpn. J. Appl. Phys. Part 2 44, L1066 (2005).
[CrossRef]

Biss, D. P.

Bright, T. B.

M. D. Porter, T. B. Bright, D. L. Allara, and C. E. D. Chidsey, J. Am. Chem. Soc. 109, 3559 (1987).
[CrossRef]

Brown, T. G.

Buck, M.

M. Buck, F. Eisert, J. Fischer, M. Grunze, and F. Träger, Appl. Phys. A 53, 552 (1991).
[CrossRef]

Chidsey, C. E. D.

M. D. Porter, T. B. Bright, D. L. Allara, and C. E. D. Chidsey, J. Am. Chem. Soc. 109, 3559 (1987).
[CrossRef]

Choudhury, A.

Dorn, R.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

Eberler, M.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

Ehler, T. T.

T. T. Ehler, N. Malmberg, and L. J. Noe, J. Phys. Chem. B 101, 1268 (1997).
[CrossRef]

Eisert, F.

M. Buck, F. Eisert, J. Fischer, M. Grunze, and F. Träger, Appl. Phys. A 53, 552 (1991).
[CrossRef]

Fischer, J.

M. Buck, F. Eisert, J. Fischer, M. Grunze, and F. Träger, Appl. Phys. A 53, 552 (1991).
[CrossRef]

Flink, S.

S. Flink, F. C. J. M. van Veggel, and D. N. Reinhoudt, J. Phys. Org. Chem. 14, 407 (2001).
[CrossRef]

Glöckl, O.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

Grunze, M.

M. Buck, F. Eisert, J. Fischer, M. Grunze, and F. Träger, Appl. Phys. A 53, 552 (1991).
[CrossRef]

Hashimoto, M.

K. Yoshiki, R. Kanamaru, M. Hashimoto, N. Hashimoto, and T. Araki, Opt. Lett. 32, 1680 (2007).
[CrossRef] [PubMed]

K. Yoshiki, M. Hashimoto, and T. Araki, Jpn. J. Appl. Phys. Part 2 44, L1066 (2005).
[CrossRef]

Hashimoto, N.

Hecht, B.

B. Sick, B. Hecht, and L. Novotny, Phys. Rev. Lett. 85, 4482 (2000).
[CrossRef] [PubMed]

Hoffmann, F. M.

F. M. Hoffmann, Surf. Sci. Rep. 3, 107 (1983).
[CrossRef]

Horiguchi, N.

Kanamaru, R.

Kano, H.

Knippels, G. M. H.

D. V. Palanker, G. M. H. Knippels, T. I. Smith, and H. A. Schwettman, Opt. Commun. 148, 215 (1998).
[CrossRef]

Leuchs, G.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

Malmberg, N.

T. T. Ehler, N. Malmberg, and L. J. Noe, J. Phys. Chem. B 101, 1268 (1997).
[CrossRef]

Noe, L. J.

T. T. Ehler, N. Malmberg, and L. J. Noe, J. Phys. Chem. B 101, 1268 (1997).
[CrossRef]

Novotny, L.

B. Sick, B. Hecht, and L. Novotny, Phys. Rev. Lett. 85, 4482 (2000).
[CrossRef] [PubMed]

Palanker, D. V.

D. V. Palanker, G. M. H. Knippels, T. I. Smith, and H. A. Schwettman, Opt. Commun. 148, 215 (1998).
[CrossRef]

Porter, M. D.

M. D. Porter, T. B. Bright, D. L. Allara, and C. E. D. Chidsey, J. Am. Chem. Soc. 109, 3559 (1987).
[CrossRef]

Quabis, S.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

Reinhoudt, D. N.

S. Flink, F. C. J. M. van Veggel, and D. N. Reinhoudt, J. Phys. Org. Chem. 14, 407 (2001).
[CrossRef]

Schwettman, H. A.

D. V. Palanker, G. M. H. Knippels, T. I. Smith, and H. A. Schwettman, Opt. Commun. 148, 215 (1998).
[CrossRef]

Shen, Y. R.

X. D. Zhu, H. Suhr, and Y. R. Shen, Phys. Rev. B 35, 3047 (1987).
[CrossRef]

Sheppard, C. J. R.

Sick, B.

B. Sick, B. Hecht, and L. Novotny, Phys. Rev. Lett. 85, 4482 (2000).
[CrossRef] [PubMed]

Smith, T. I.

D. V. Palanker, G. M. H. Knippels, T. I. Smith, and H. A. Schwettman, Opt. Commun. 148, 215 (1998).
[CrossRef]

Suhr, H.

X. D. Zhu, H. Suhr, and Y. R. Shen, Phys. Rev. B 35, 3047 (1987).
[CrossRef]

Toussaint, K. C.

A. F. Abouraddy and K. C. Toussaint, Jr., Phys. Rev. Lett. 96, 153901 (2006).
[CrossRef] [PubMed]

Träger, F.

M. Buck, F. Eisert, J. Fischer, M. Grunze, and F. Träger, Appl. Phys. A 53, 552 (1991).
[CrossRef]

van Veggel, F. C. J. M.

S. Flink, F. C. J. M. van Veggel, and D. N. Reinhoudt, J. Phys. Org. Chem. 14, 407 (2001).
[CrossRef]

Watanabe, K.

Yoshiki, K.

K. Yoshiki, R. Kanamaru, M. Hashimoto, N. Hashimoto, and T. Araki, Opt. Lett. 32, 1680 (2007).
[CrossRef] [PubMed]

K. Yoshiki, M. Hashimoto, and T. Araki, Jpn. J. Appl. Phys. Part 2 44, L1066 (2005).
[CrossRef]

Youngworth, K. S.

Zhu, X. D.

X. D. Zhu, H. Suhr, and Y. R. Shen, Phys. Rev. B 35, 3047 (1987).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. A (1)

M. Buck, F. Eisert, J. Fischer, M. Grunze, and F. Träger, Appl. Phys. A 53, 552 (1991).
[CrossRef]

J. Am. Chem. Soc. (1)

M. D. Porter, T. B. Bright, D. L. Allara, and C. E. D. Chidsey, J. Am. Chem. Soc. 109, 3559 (1987).
[CrossRef]

J. Phys. Chem. B (1)

T. T. Ehler, N. Malmberg, and L. J. Noe, J. Phys. Chem. B 101, 1268 (1997).
[CrossRef]

J. Phys. Org. Chem. (1)

S. Flink, F. C. J. M. van Veggel, and D. N. Reinhoudt, J. Phys. Org. Chem. 14, 407 (2001).
[CrossRef]

Jpn. J. Appl. Phys. Part 2 (1)

K. Yoshiki, M. Hashimoto, and T. Araki, Jpn. J. Appl. Phys. Part 2 44, L1066 (2005).
[CrossRef]

Opt. Commun. (2)

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

D. V. Palanker, G. M. H. Knippels, T. I. Smith, and H. A. Schwettman, Opt. Commun. 148, 215 (1998).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. B (1)

X. D. Zhu, H. Suhr, and Y. R. Shen, Phys. Rev. B 35, 3047 (1987).
[CrossRef]

Phys. Rev. Lett. (2)

A. F. Abouraddy and K. C. Toussaint, Jr., Phys. Rev. Lett. 96, 153901 (2006).
[CrossRef] [PubMed]

B. Sick, B. Hecht, and L. Novotny, Phys. Rev. Lett. 85, 4482 (2000).
[CrossRef] [PubMed]

Surf. Sci. Rep. (1)

F. M. Hoffmann, Surf. Sci. Rep. 3, 107 (1983).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Optical intensity distribution of focused (a), (b) linearly and radially (c), (d) polarized beams reflected on metal surface. Panels (a) and (c) show the intensity at the metal surface ( x y plane), and panels (b) and (d) show the intensity in the incident plane ( x z plane). Panel (e) shows the squared intensity at the metal surface along the x axis, because SHG is proportional to the squared intensity of the excitation beam.

Fig. 2
Fig. 2

Optical layout of SHG microscope with polarization mode converter. DM, dichroic mirror; F1, F2, filters; PMT, photomultiplier tube; M, mirror.

Fig. 3
Fig. 3

Observed SHG from SAM on Au. (a) Polarization dependency of SHG from DACITC on Au and (b) sample dependency of SHG excited by focused radially polarized beam.

Tables (1)

Tables Icon

Table 1 Results of SPR Measurement

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I SHG χ Au ( 2 ) + χ SAM ( 2 ) exp ( i ϕ ) 2 I ex 2 ,

Metrics