Abstract

We numerically study the characteristics of optical transmission of metallic nanoslit arrays (MNSAs) with embedded microcavities (MC-MNSAs) and demonstrate that passbands of the transmission spectra can be monotonously tuned by adjusting the dimensions of the microcavities. The study discloses that spectra of conventional MNSAs and MC-MNSAs are determined mainly by cavity resonances of the slits or embedded microcavities, modified by in-plane surface-plasmon wave resonances. It is also found that coupling of cavity resonances between neighboring slits or microcavities has considerable effects on the passbands. The MC-MNSA structure is shown to have potentials in applications of tunable filter arrays.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Schröter and D. Heitmann, Phys. Rev. B 58, 15419 (1998).
    [CrossRef]
  2. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, Phys. Rev. Lett. 83, 2845 (1999).
    [CrossRef]
  3. Q. Cao and P. Lalanne, Phys. Rev. Lett. 88, 057403 (2002).
    [CrossRef] [PubMed]
  4. Z. Sun, Y. S. Jung, and H. K. Kim, Appl. Phys. Lett. 83, 3021 (2003).
    [CrossRef]
  5. Y. Xie, A. Zakharian, J. V. Moloney, and M. Mansuripur, Opt. Express 13, 4485 (2005).
    [CrossRef] [PubMed]
  6. O. T. A. Janssen, H. P. Urbach, and G. W. 't Hooft, Opt. Express 14, 11823 (2006).
    [CrossRef] [PubMed]
  7. D. J. Park, K. G. Lee, H. W. Kihm, Y. M. Byun, D. S. Kim, C. Ropers, C. Lienau, J. H. Kang, and Q-Han Park, Appl. Phys. Lett. 93, 073109-1 (2008).
  8. H. Kim, Z. Sun, and Y. S. Jung, U. S. patent 7,420,156 (September 2, 2008).
  9. Z. Sun and D. Zeng, J. Mod. Opt. 55, 1639 (2008).
    [CrossRef]
  10. The numerical calculations were performed with the software FullWAVEtrade (ver. 6.0, RSoft Design Group, Inc.), which is based on the finite-difference time-domain method. In simulations, the periodic boundary conditions were applied in the periodic direction (x direction), and perfect-matching layer boundary conditions were applied in nonperiodic directions (x and/or z direction). Permittivity of silver is defined in the software as a sum of Lorenzian functions: ε(ω)=ε∞+∑kΔεk/[ak(iω)2−bk(iω)+ck], where ε∞ is the value of permittivity in the limit of infinite frequency ω (unit, rad/μm), Δεk is the strength of each resonance, and ak, bk, and ck are fitting coefficients.
  11. The cavity intensity is calculated as the field intensity ∣Hy∣2 integrated over the area of the monitor located in the cavity.

2008

D. J. Park, K. G. Lee, H. W. Kihm, Y. M. Byun, D. S. Kim, C. Ropers, C. Lienau, J. H. Kang, and Q-Han Park, Appl. Phys. Lett. 93, 073109-1 (2008).

Z. Sun and D. Zeng, J. Mod. Opt. 55, 1639 (2008).
[CrossRef]

2006

2005

2003

Z. Sun, Y. S. Jung, and H. K. Kim, Appl. Phys. Lett. 83, 3021 (2003).
[CrossRef]

2002

Q. Cao and P. Lalanne, Phys. Rev. Lett. 88, 057403 (2002).
[CrossRef] [PubMed]

1999

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, Phys. Rev. Lett. 83, 2845 (1999).
[CrossRef]

1998

U. Schröter and D. Heitmann, Phys. Rev. B 58, 15419 (1998).
[CrossRef]

Byun, Y. M.

D. J. Park, K. G. Lee, H. W. Kihm, Y. M. Byun, D. S. Kim, C. Ropers, C. Lienau, J. H. Kang, and Q-Han Park, Appl. Phys. Lett. 93, 073109-1 (2008).

Cao, Q.

Q. Cao and P. Lalanne, Phys. Rev. Lett. 88, 057403 (2002).
[CrossRef] [PubMed]

Garcia-Vidal, F. J.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, Phys. Rev. Lett. 83, 2845 (1999).
[CrossRef]

Heitmann, D.

U. Schröter and D. Heitmann, Phys. Rev. B 58, 15419 (1998).
[CrossRef]

Janssen, O. T. A.

Jung, Y. S.

Z. Sun, Y. S. Jung, and H. K. Kim, Appl. Phys. Lett. 83, 3021 (2003).
[CrossRef]

H. Kim, Z. Sun, and Y. S. Jung, U. S. patent 7,420,156 (September 2, 2008).

Kang, J. H.

D. J. Park, K. G. Lee, H. W. Kihm, Y. M. Byun, D. S. Kim, C. Ropers, C. Lienau, J. H. Kang, and Q-Han Park, Appl. Phys. Lett. 93, 073109-1 (2008).

Kihm, H. W.

D. J. Park, K. G. Lee, H. W. Kihm, Y. M. Byun, D. S. Kim, C. Ropers, C. Lienau, J. H. Kang, and Q-Han Park, Appl. Phys. Lett. 93, 073109-1 (2008).

Kim, D. S.

D. J. Park, K. G. Lee, H. W. Kihm, Y. M. Byun, D. S. Kim, C. Ropers, C. Lienau, J. H. Kang, and Q-Han Park, Appl. Phys. Lett. 93, 073109-1 (2008).

Kim, H.

H. Kim, Z. Sun, and Y. S. Jung, U. S. patent 7,420,156 (September 2, 2008).

Kim, H. K.

Z. Sun, Y. S. Jung, and H. K. Kim, Appl. Phys. Lett. 83, 3021 (2003).
[CrossRef]

Lalanne, P.

Q. Cao and P. Lalanne, Phys. Rev. Lett. 88, 057403 (2002).
[CrossRef] [PubMed]

Lee, K. G.

D. J. Park, K. G. Lee, H. W. Kihm, Y. M. Byun, D. S. Kim, C. Ropers, C. Lienau, J. H. Kang, and Q-Han Park, Appl. Phys. Lett. 93, 073109-1 (2008).

Lienau, C.

D. J. Park, K. G. Lee, H. W. Kihm, Y. M. Byun, D. S. Kim, C. Ropers, C. Lienau, J. H. Kang, and Q-Han Park, Appl. Phys. Lett. 93, 073109-1 (2008).

Mansuripur, M.

Moloney, J. V.

Park, D. J.

D. J. Park, K. G. Lee, H. W. Kihm, Y. M. Byun, D. S. Kim, C. Ropers, C. Lienau, J. H. Kang, and Q-Han Park, Appl. Phys. Lett. 93, 073109-1 (2008).

Park, Q-Han

D. J. Park, K. G. Lee, H. W. Kihm, Y. M. Byun, D. S. Kim, C. Ropers, C. Lienau, J. H. Kang, and Q-Han Park, Appl. Phys. Lett. 93, 073109-1 (2008).

Pendry, J. B.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, Phys. Rev. Lett. 83, 2845 (1999).
[CrossRef]

Porto, J. A.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, Phys. Rev. Lett. 83, 2845 (1999).
[CrossRef]

Ropers, C.

D. J. Park, K. G. Lee, H. W. Kihm, Y. M. Byun, D. S. Kim, C. Ropers, C. Lienau, J. H. Kang, and Q-Han Park, Appl. Phys. Lett. 93, 073109-1 (2008).

Schröter, U.

U. Schröter and D. Heitmann, Phys. Rev. B 58, 15419 (1998).
[CrossRef]

Sun, Z.

Z. Sun and D. Zeng, J. Mod. Opt. 55, 1639 (2008).
[CrossRef]

Z. Sun, Y. S. Jung, and H. K. Kim, Appl. Phys. Lett. 83, 3021 (2003).
[CrossRef]

H. Kim, Z. Sun, and Y. S. Jung, U. S. patent 7,420,156 (September 2, 2008).

't Hooft, G. W.

Urbach, H. P.

Xie, Y.

Zakharian, A.

Zeng, D.

Z. Sun and D. Zeng, J. Mod. Opt. 55, 1639 (2008).
[CrossRef]

Appl. Phys. Lett.

Z. Sun, Y. S. Jung, and H. K. Kim, Appl. Phys. Lett. 83, 3021 (2003).
[CrossRef]

D. J. Park, K. G. Lee, H. W. Kihm, Y. M. Byun, D. S. Kim, C. Ropers, C. Lienau, J. H. Kang, and Q-Han Park, Appl. Phys. Lett. 93, 073109-1 (2008).

J. Mod. Opt.

Z. Sun and D. Zeng, J. Mod. Opt. 55, 1639 (2008).
[CrossRef]

Opt. Express

Phys. Rev. B

U. Schröter and D. Heitmann, Phys. Rev. B 58, 15419 (1998).
[CrossRef]

Phys. Rev. Lett.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, Phys. Rev. Lett. 83, 2845 (1999).
[CrossRef]

Q. Cao and P. Lalanne, Phys. Rev. Lett. 88, 057403 (2002).
[CrossRef] [PubMed]

Other

H. Kim, Z. Sun, and Y. S. Jung, U. S. patent 7,420,156 (September 2, 2008).

The numerical calculations were performed with the software FullWAVEtrade (ver. 6.0, RSoft Design Group, Inc.), which is based on the finite-difference time-domain method. In simulations, the periodic boundary conditions were applied in the periodic direction (x direction), and perfect-matching layer boundary conditions were applied in nonperiodic directions (x and/or z direction). Permittivity of silver is defined in the software as a sum of Lorenzian functions: ε(ω)=ε∞+∑kΔεk/[ak(iω)2−bk(iω)+ck], where ε∞ is the value of permittivity in the limit of infinite frequency ω (unit, rad/μm), Δεk is the strength of each resonance, and ak, bk, and ck are fitting coefficients.

The cavity intensity is calculated as the field intensity ∣Hy∣2 integrated over the area of the monitor located in the cavity.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic illustration of an MC-MNSA. (b) Calculated transmission spectra of MC-MNSAs with different cavity widths a (in nanometers) at t = 200 nm , w = 80 nm , p = 400 nm , and b = 50 nm . (c) and (d) show dependences of the main transmission peak ( λ peak ) on the cavity width a and height b, in which t = 200 nm , w = 80 nm , and p = 400 nm .

Fig. 2
Fig. 2

Calculated transmission spectra of (a) conventional MNSAs and (b) MC-MNSAs with different periods p (in nanometers), in which t = 200 nm , w = 80 nm for both, and a = 160 nm , b = 50 nm for (b). Transmission spectrum (relative values, normalized arbitrarily) of a corresponding single slit [in (a)] or single slit with an embedded microcavity [in (b)] in a continuous metal film (labeled “1-slit”) is also shown for comparison.

Fig. 3
Fig. 3

Calculated mode profile ( H y field distribution) of a microcavity in an MC-MNSA with t = 200 nm , w = 80 nm , p = 400 nm , a = 160 nm , and b = 100 nm . (b) and (c) show the field values along the line of z = 0.6 μ m and the line of x = 0 μ m in the contour map (a).

Fig. 4
Fig. 4

Calculated spectra of cavity intensity inside single slits or microcavities of (a) conventional MNSAs and (b) MC-MNSAs with different periods p (in nanometers), in which t = 200 nm , w = 80 nm for both, and a = 160 nm , b = 100 nm for (b). Spectra of cavity intensity for corresponding single slits or microcavities in continuous metal films (labeled “1-slit”) are also shown in both plots.

Metrics