Abstract

We propose a technique for realization of a high-contrast, tunable, low-insertion-loss notch filter using polarization selectivity of whispering-gallery-mode resonators. We demonstrate a 10MHz filter with 5.5dB insertion loss and 45.5dB of in-band rejection. The measured rejection value is limited by the finite (3kHz) linewidth of our laser. We show that the filter can potentially have tunable bandwidth without significant rejection modification.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany, B. Ortega, D. Pastor, and S. Sales, J. Lightwave Technol. 23, 702 (2005).
    [CrossRef]
  2. R. Zheng, K. E. Alameh, and Z. Wang, Microwave Opt. Technol. Lett. 48, 1011 (2006).
    [CrossRef]
  3. E. H. W. Chan and R. A. Minasian, J. Lightwave Technol. 24, 2676 (2006).
    [CrossRef]
  4. V. S. Ilchenko and A. B. Matsko, IEEE J. Sel. Top. Quantum Electron. 12, 15 (2006).
    [CrossRef]
  5. A. Yariv, IEEE Photonics Technol. Lett. 14, 483 (2002).
    [CrossRef]
  6. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, Phys. Rev. Lett. 91, 043902 (2003).
    [CrossRef] [PubMed]
  7. P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, IEEE Photonics Technol. Lett. 12, 398 (2000).
    [CrossRef]
  8. J. D. Jackson, Classical Electrodynamics (Wiley, 1999).
  9. L. Maleki, V. S. Ilchenko, A. A. Savchenkov, and A. B. Matsko, in Practical Applications of Microresonators in Optics and Photonics, A.B.Matsko, ed. (CRC Press, 2009), Chap. 3.
  10. A. E. Fomin, M. L. Gorodetsky, I. S. Grudinin, and V. S. Ilchenko, J. Opt. Soc. Am. B 22, 459 (2005).
    [CrossRef]
  11. G. M. Stephan, T. T. Tam, S. Blin, P. Besnard, and M. Tetu, Phys. Rev. A 71, 043809 (2005).
    [CrossRef]
  12. L. B. Mercer, J. Lightwave Technol. 9, 485 (1991).
    [CrossRef]

2006 (3)

R. Zheng, K. E. Alameh, and Z. Wang, Microwave Opt. Technol. Lett. 48, 1011 (2006).
[CrossRef]

E. H. W. Chan and R. A. Minasian, J. Lightwave Technol. 24, 2676 (2006).
[CrossRef]

V. S. Ilchenko and A. B. Matsko, IEEE J. Sel. Top. Quantum Electron. 12, 15 (2006).
[CrossRef]

2005 (3)

2003 (1)

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

2002 (1)

A. Yariv, IEEE Photonics Technol. Lett. 14, 483 (2002).
[CrossRef]

2000 (1)

P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, IEEE Photonics Technol. Lett. 12, 398 (2000).
[CrossRef]

1991 (1)

L. B. Mercer, J. Lightwave Technol. 9, 485 (1991).
[CrossRef]

Absil, P. P.

P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, IEEE Photonics Technol. Lett. 12, 398 (2000).
[CrossRef]

Alameh, K. E.

R. Zheng, K. E. Alameh, and Z. Wang, Microwave Opt. Technol. Lett. 48, 1011 (2006).
[CrossRef]

Besnard, P.

G. M. Stephan, T. T. Tam, S. Blin, P. Besnard, and M. Tetu, Phys. Rev. A 71, 043809 (2005).
[CrossRef]

Blin, S.

G. M. Stephan, T. T. Tam, S. Blin, P. Besnard, and M. Tetu, Phys. Rev. A 71, 043809 (2005).
[CrossRef]

Capmany, J.

Chan, E. H. W.

Fomin, A. E.

Gorodetsky, M. L.

Grudinin, I. S.

Ho, P.-T.

P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, IEEE Photonics Technol. Lett. 12, 398 (2000).
[CrossRef]

Hryniewicz, J. V.

P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, IEEE Photonics Technol. Lett. 12, 398 (2000).
[CrossRef]

Ilchenko, V. S.

V. S. Ilchenko and A. B. Matsko, IEEE J. Sel. Top. Quantum Electron. 12, 15 (2006).
[CrossRef]

A. E. Fomin, M. L. Gorodetsky, I. S. Grudinin, and V. S. Ilchenko, J. Opt. Soc. Am. B 22, 459 (2005).
[CrossRef]

L. Maleki, V. S. Ilchenko, A. A. Savchenkov, and A. B. Matsko, in Practical Applications of Microresonators in Optics and Photonics, A.B.Matsko, ed. (CRC Press, 2009), Chap. 3.

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, 1999).

Joneckis, L. G.

P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, IEEE Photonics Technol. Lett. 12, 398 (2000).
[CrossRef]

Kippenberg, T. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

Little, B. E.

P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, IEEE Photonics Technol. Lett. 12, 398 (2000).
[CrossRef]

Maleki, L.

L. Maleki, V. S. Ilchenko, A. A. Savchenkov, and A. B. Matsko, in Practical Applications of Microresonators in Optics and Photonics, A.B.Matsko, ed. (CRC Press, 2009), Chap. 3.

Matsko, A. B.

V. S. Ilchenko and A. B. Matsko, IEEE J. Sel. Top. Quantum Electron. 12, 15 (2006).
[CrossRef]

L. Maleki, V. S. Ilchenko, A. A. Savchenkov, and A. B. Matsko, in Practical Applications of Microresonators in Optics and Photonics, A.B.Matsko, ed. (CRC Press, 2009), Chap. 3.

Mercer, L. B.

L. B. Mercer, J. Lightwave Technol. 9, 485 (1991).
[CrossRef]

Minasian, R. A.

Ortega, B.

Painter, O. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

Pastor, D.

Sales, S.

Savchenkov, A. A.

L. Maleki, V. S. Ilchenko, A. A. Savchenkov, and A. B. Matsko, in Practical Applications of Microresonators in Optics and Photonics, A.B.Matsko, ed. (CRC Press, 2009), Chap. 3.

Spillane, S. M.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

Stephan, G. M.

G. M. Stephan, T. T. Tam, S. Blin, P. Besnard, and M. Tetu, Phys. Rev. A 71, 043809 (2005).
[CrossRef]

Tam, T. T.

G. M. Stephan, T. T. Tam, S. Blin, P. Besnard, and M. Tetu, Phys. Rev. A 71, 043809 (2005).
[CrossRef]

Tetu, M.

G. M. Stephan, T. T. Tam, S. Blin, P. Besnard, and M. Tetu, Phys. Rev. A 71, 043809 (2005).
[CrossRef]

Vahala, K. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

Wang, Z.

R. Zheng, K. E. Alameh, and Z. Wang, Microwave Opt. Technol. Lett. 48, 1011 (2006).
[CrossRef]

Wilson, R. A.

P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, IEEE Photonics Technol. Lett. 12, 398 (2000).
[CrossRef]

Yariv, A.

A. Yariv, IEEE Photonics Technol. Lett. 14, 483 (2002).
[CrossRef]

Zheng, R.

R. Zheng, K. E. Alameh, and Z. Wang, Microwave Opt. Technol. Lett. 48, 1011 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

V. S. Ilchenko and A. B. Matsko, IEEE J. Sel. Top. Quantum Electron. 12, 15 (2006).
[CrossRef]

IEEE Photonics Technol. Lett. (2)

A. Yariv, IEEE Photonics Technol. Lett. 14, 483 (2002).
[CrossRef]

P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, IEEE Photonics Technol. Lett. 12, 398 (2000).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (1)

Microwave Opt. Technol. Lett. (1)

R. Zheng, K. E. Alameh, and Z. Wang, Microwave Opt. Technol. Lett. 48, 1011 (2006).
[CrossRef]

Phys. Rev. A (1)

G. M. Stephan, T. T. Tam, S. Blin, P. Besnard, and M. Tetu, Phys. Rev. A 71, 043809 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

Other (2)

J. D. Jackson, Classical Electrodynamics (Wiley, 1999).

L. Maleki, V. S. Ilchenko, A. A. Savchenkov, and A. B. Matsko, in Practical Applications of Microresonators in Optics and Photonics, A.B.Matsko, ed. (CRC Press, 2009), Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the WGM resonator-based notch filter. Light entering the resonator is polarized such that it partially interacts with the resonator mode if its frequency coincides with the mode frequency. As a result, the polarization of the resonant light changes, while the polarization of the off-resonant light stays the same. A 50 cm piece of single-mode fiber is placed after the prism to filter out spatial modes of light exiting the resonator. A polarizer placed after the fiber is tuned such that no light passes through it at the resonant frequency. The entire system generates a high-contrast zero-pole filter function even if the coupling of the light and the resonator mode is not perfect.

Fig. 2
Fig. 2

Experimentally measured filter function of the notch filter measured with 0.25 mW laser light. The maximum rejection rate is approximately 45.5 dB . The insertion loss is about 5.5 dB ( 4 dB is due to the collimator–prism coupling loss, and 1.5 dB is from the polarizer), so the contrast is 40 dB.

Fig. 3
Fig. 3

Modification of the filter function due to thermal nonlinearity. The optical power sent to the resonator approaches 1 mW . The maximum rejection rate is approximately 50 dB , and the contrast is 46 dB.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

E in = E 0 ( e ̂ x ξ e i ϕ 0 + e ̂ y 1 ξ ) ,
E out = E 0 α ( e ̂ x ξ e i ϕ Σ + e ̂ y 1 ξ S c ) ,
S c = γ γ c i ( ω ω 0 ) γ + γ c i ( ω ω 0 ) ,
ϕ Σ = ϕ 0 + ϕ ,
P α P in = sin ϕ p ξ e i ϕ Σ + cos ϕ p 1 ξ S c 2 + κ p cos ϕ p ξ e i ϕ Σ sin ϕ p 1 ξ S c 2 .
P r α P in ω = ω 0 = ( γ c γ ) 2 ( γ c + γ ) 2 , P r α P in ω ω 0 = 1 ,
sin ϕ p = ξ , ϕ Σ = 0 , ξ = γ c γ 2 γ c , γ c > γ ,
P α P in ω = ω 0 = κ p γ c γ γ c + γ , P α P in ω ω 0 = 1 ,
sin ϕ p = 1 2 , ϕ Σ = 0 , ξ = ( γ c γ ) 2 2 ( γ c 2 + γ 2 ) , γ c > γ ,
P α P in ω = ω 0 = κ p ( γ c γ ) 2 γ c 2 + γ 2 , P α P in ω ω 0 = γ c 2 γ c 2 + γ 2 ,

Metrics