Abstract

We propose and demonstrate a simple method to generate ultrawideband (UWB) pulses in the optical domain using a chirped intensity modulator and an asymmetric Mach–Zehnder interferometer (AMZI). Polarity- and shape-switchable UWB Gaussian monocycle, doublet, and triplet pulses with fractional bandwidths of 158%, 134%, and 100% and center frequencies of 6.52, 9.78, and 10.1 GHz are experimentally generated by controlling the dc bias of the intensity modulator and adjusting the polarization controller in the AMZI.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. R. Aiello and G. D. Rogerson, IEEE Microw. Mag. 4, 36 (2003).
    [CrossRef]
  2. J. P. Yao, F. Zeng, and Q. Wang, J. Lightwave Technol. 25, 3219 (2007).
    [CrossRef]
  3. F. Zeng and J. P. Yao, IEEE Photon. Technol. Lett. 18, 2062 (2006).
    [CrossRef]
  4. H. W. Chen, M. H. Chen, C. Y. Qiu, and S. Z. Xie, IEEE Photon. Technol. Lett. 19, 2021 (2007).
    [CrossRef]
  5. S. Pan and J. P. Yao, Opt. Lett. 34, 160 (2009).
    [CrossRef] [PubMed]
  6. Y. T. Dai and J. P. Yao, J. Lightwave Technol. 26, 2513 (2008).
    [CrossRef]
  7. Q. Wang and J. P. Yao, J. Lightwave Technol. 25, 3626 (2007).
    [CrossRef]
  8. Q. Wang and J. P. Yao, Electron. Lett. 42, 1304 (2006).
    [CrossRef]
  9. J. Q. Li, S. N. Fu, K. Xu, J. T. Wu, J. T. Lin, M. Tang, and P. Shum, Opt. Lett. 33, 288 (2008).
    [CrossRef] [PubMed]
  10. C. Wang, F. Zeng, and J. P. Yao, IEEE Photon. Technol. Lett. 19, 137 (2007).
    [CrossRef]
  11. M. Abtahi, J. Magne, M. Mirshaflei, L. A. Rusch, and S. LaRochelle, IEEE J. Lightwave Technol. 26, 628 (2008).
    [CrossRef]
  12. F. Zeng, Q. Wang, and J. P. Yao, Electron. Lett. 43, 119 (2007).
    [CrossRef]

2009 (1)

2008 (3)

2007 (5)

J. P. Yao, F. Zeng, and Q. Wang, J. Lightwave Technol. 25, 3219 (2007).
[CrossRef]

Q. Wang and J. P. Yao, J. Lightwave Technol. 25, 3626 (2007).
[CrossRef]

F. Zeng, Q. Wang, and J. P. Yao, Electron. Lett. 43, 119 (2007).
[CrossRef]

H. W. Chen, M. H. Chen, C. Y. Qiu, and S. Z. Xie, IEEE Photon. Technol. Lett. 19, 2021 (2007).
[CrossRef]

C. Wang, F. Zeng, and J. P. Yao, IEEE Photon. Technol. Lett. 19, 137 (2007).
[CrossRef]

2006 (2)

Q. Wang and J. P. Yao, Electron. Lett. 42, 1304 (2006).
[CrossRef]

F. Zeng and J. P. Yao, IEEE Photon. Technol. Lett. 18, 2062 (2006).
[CrossRef]

2003 (1)

G. R. Aiello and G. D. Rogerson, IEEE Microw. Mag. 4, 36 (2003).
[CrossRef]

Abtahi, M.

M. Abtahi, J. Magne, M. Mirshaflei, L. A. Rusch, and S. LaRochelle, IEEE J. Lightwave Technol. 26, 628 (2008).
[CrossRef]

Aiello, G. R.

G. R. Aiello and G. D. Rogerson, IEEE Microw. Mag. 4, 36 (2003).
[CrossRef]

Chen, H. W.

H. W. Chen, M. H. Chen, C. Y. Qiu, and S. Z. Xie, IEEE Photon. Technol. Lett. 19, 2021 (2007).
[CrossRef]

Chen, M. H.

H. W. Chen, M. H. Chen, C. Y. Qiu, and S. Z. Xie, IEEE Photon. Technol. Lett. 19, 2021 (2007).
[CrossRef]

Dai, Y. T.

Fu, S. N.

LaRochelle, S.

M. Abtahi, J. Magne, M. Mirshaflei, L. A. Rusch, and S. LaRochelle, IEEE J. Lightwave Technol. 26, 628 (2008).
[CrossRef]

Li, J. Q.

Lin, J. T.

Magne, J.

M. Abtahi, J. Magne, M. Mirshaflei, L. A. Rusch, and S. LaRochelle, IEEE J. Lightwave Technol. 26, 628 (2008).
[CrossRef]

Mirshaflei, M.

M. Abtahi, J. Magne, M. Mirshaflei, L. A. Rusch, and S. LaRochelle, IEEE J. Lightwave Technol. 26, 628 (2008).
[CrossRef]

Pan, S.

Qiu, C. Y.

H. W. Chen, M. H. Chen, C. Y. Qiu, and S. Z. Xie, IEEE Photon. Technol. Lett. 19, 2021 (2007).
[CrossRef]

Rogerson, G. D.

G. R. Aiello and G. D. Rogerson, IEEE Microw. Mag. 4, 36 (2003).
[CrossRef]

Rusch, L. A.

M. Abtahi, J. Magne, M. Mirshaflei, L. A. Rusch, and S. LaRochelle, IEEE J. Lightwave Technol. 26, 628 (2008).
[CrossRef]

Shum, P.

Tang, M.

Wang, C.

C. Wang, F. Zeng, and J. P. Yao, IEEE Photon. Technol. Lett. 19, 137 (2007).
[CrossRef]

Wang, Q.

Q. Wang and J. P. Yao, J. Lightwave Technol. 25, 3626 (2007).
[CrossRef]

F. Zeng, Q. Wang, and J. P. Yao, Electron. Lett. 43, 119 (2007).
[CrossRef]

J. P. Yao, F. Zeng, and Q. Wang, J. Lightwave Technol. 25, 3219 (2007).
[CrossRef]

Q. Wang and J. P. Yao, Electron. Lett. 42, 1304 (2006).
[CrossRef]

Wu, J. T.

Xie, S. Z.

H. W. Chen, M. H. Chen, C. Y. Qiu, and S. Z. Xie, IEEE Photon. Technol. Lett. 19, 2021 (2007).
[CrossRef]

Xu, K.

Yao, J. P.

S. Pan and J. P. Yao, Opt. Lett. 34, 160 (2009).
[CrossRef] [PubMed]

Y. T. Dai and J. P. Yao, J. Lightwave Technol. 26, 2513 (2008).
[CrossRef]

J. P. Yao, F. Zeng, and Q. Wang, J. Lightwave Technol. 25, 3219 (2007).
[CrossRef]

F. Zeng, Q. Wang, and J. P. Yao, Electron. Lett. 43, 119 (2007).
[CrossRef]

Q. Wang and J. P. Yao, J. Lightwave Technol. 25, 3626 (2007).
[CrossRef]

C. Wang, F. Zeng, and J. P. Yao, IEEE Photon. Technol. Lett. 19, 137 (2007).
[CrossRef]

F. Zeng and J. P. Yao, IEEE Photon. Technol. Lett. 18, 2062 (2006).
[CrossRef]

Q. Wang and J. P. Yao, Electron. Lett. 42, 1304 (2006).
[CrossRef]

Zeng, F.

J. P. Yao, F. Zeng, and Q. Wang, J. Lightwave Technol. 25, 3219 (2007).
[CrossRef]

F. Zeng, Q. Wang, and J. P. Yao, Electron. Lett. 43, 119 (2007).
[CrossRef]

C. Wang, F. Zeng, and J. P. Yao, IEEE Photon. Technol. Lett. 19, 137 (2007).
[CrossRef]

F. Zeng and J. P. Yao, IEEE Photon. Technol. Lett. 18, 2062 (2006).
[CrossRef]

Electron. Lett. (2)

Q. Wang and J. P. Yao, Electron. Lett. 42, 1304 (2006).
[CrossRef]

F. Zeng, Q. Wang, and J. P. Yao, Electron. Lett. 43, 119 (2007).
[CrossRef]

IEEE J. Lightwave Technol. (1)

M. Abtahi, J. Magne, M. Mirshaflei, L. A. Rusch, and S. LaRochelle, IEEE J. Lightwave Technol. 26, 628 (2008).
[CrossRef]

IEEE Microw. Mag. (1)

G. R. Aiello and G. D. Rogerson, IEEE Microw. Mag. 4, 36 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

F. Zeng and J. P. Yao, IEEE Photon. Technol. Lett. 18, 2062 (2006).
[CrossRef]

H. W. Chen, M. H. Chen, C. Y. Qiu, and S. Z. Xie, IEEE Photon. Technol. Lett. 19, 2021 (2007).
[CrossRef]

C. Wang, F. Zeng, and J. P. Yao, IEEE Photon. Technol. Lett. 19, 137 (2007).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

UWB pulse generator using an IM and an asymmetric AMZI. LD, laser diode; PC, polarization controller; PMF, polarization-maintaining fiber; and PD, photodetector.

Fig. 2
Fig. 2

Simulation results for the UWB Gaussian doublet and triplet generated using an IM and an AMZI. (a) Doublet, (b) triplet.

Fig. 3
Fig. 3

Waveforms and spectra of the generated Gaussian UWB pulses. (a) Generated UWB monocycle and (b) the corresponding electrical spectrum. (c) Generated UWB doublet and (d) the corresponding electrical spectrum. (e) Generated UWB triplet and (f) the corresponding electrical spectrum.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E IM = e j ω c t [ 1 + e j [ β ϕ ( t ) + ϕ B ] ] ,
E o cos   α + ( cos   α ) e j [ β ϕ ( t ) + ϕ B ] + ( sin   α ) e j φ + ( sin   α ) e j [ β ϕ ( t τ ) + ϕ B φ ] ,
i | cos   α | 1 + sin   2 α   cos   φ   cos [ β ϕ ( t ) + ϕ B + θ 1 ] + | sin   α | 1 + sin   2 α   cos   φ   cos [ β ϕ ( t τ ) + ϕ B θ 2 ] + 1 2 sin   2 α   cos { β [ ϕ ( t ) ϕ ( t τ ) ] + φ } ,
θ 1 = tan 1 ( sin   α   sin   φ cos   α + sin   α   cos   φ ) ,
θ 2 = tan 1 ( cos   α   sin   φ sin   α + cos   α   cos   φ ) .
I o cos [ β ϕ ( t ) ] + cos [ β ϕ ( t τ ) ] + sin [ β ϕ ( t τ ) ] sin [ β ϕ ( t ) ] sin { β [ ϕ ( t ) ϕ ( t τ ) ] } .
I o 2 β [ ϕ ( t ) ϕ ( t τ ) ] .
I o δ { cos [ β ϕ ( t ) ] + cos [ β ϕ ( t τ ) ] } cos { β [ ϕ ( t ) ϕ ( t τ ) ] } .

Metrics