Abstract

We present a technique for tunable dispersion compensation that is low cost, high speed, and has a large tuning range. By rotating a cylindrical lens at the Fourier plane of a folded 4f grating pair system, the group-velocity dispersion can be tuned over a range greater than 105fs2, sufficient for compensating the dispersion of several meters of optical fiber.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. R. Zipfel, R. M. Williams, and W. W. Webb, Nat. Biotechnol. 21, 1368 (2003).
    [CrossRef]
  2. V. Iyer, B. E. Losavio, and P. Saggau, J. Biomed. Opt. 8, 471 (2003).
    [CrossRef]
  3. M. E. Durst, G. Zhu, and C. Xu, Opt. Commun. 281, 1805 (2008).
    [CrossRef]
  4. R. L. Fork, O. E. Martinez, and J. P. Gordon, Opt. Lett. 9, 150 (1984).
    [CrossRef] [PubMed]
  5. O. E. Martinez, IEEE J. Quantum Electron. 23, 59 (1987).
    [CrossRef]
  6. S. Akturk, X. Gu, M. Kimmel, and R. Trebino, Opt. Express 14, 10108 (2006).
    [CrossRef]
  7. Y. Chen and X. Li, Opt. Express 12, 5978 (2004).
  8. N. Q. Ngo, S. Y. Li, R. T. Zheng, S. C. Tjin, and P. Shum, J. Lightwave Technol. 21, 1575 (2003).
    [CrossRef]
  9. J. van Howe and C. Xu, J. Lightwave Technol. 24, 2662 (2006).
    [CrossRef]
  10. D. M. Marom, C. R. Doerr, M. A. Cappuzzo, C. Evans Yifan, A. Wong-Foy, L. T. Gomez, and S. Chandrasekhar, J. Lightwave Technol. 24, 241 (2006).
    [CrossRef]
  11. P. Tournois, Opt. Commun. 140, 245 (1997).
    [CrossRef]
  12. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, Opt. Lett. 15, 326 (1990).
    [CrossRef] [PubMed]
  13. E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murnane, G. Mourou, H. Kapteyn, and G. Vdovin, Opt. Lett. 24, 493 (1999).
    [CrossRef]
  14. J. B. Guild, C. Xu, and W. W. Webb, Appl. Opt. 36, 401 (1997).
    [CrossRef]

2008 (1)

M. E. Durst, G. Zhu, and C. Xu, Opt. Commun. 281, 1805 (2008).
[CrossRef]

2006 (3)

S. Akturk, X. Gu, M. Kimmel, and R. Trebino, Opt. Express 14, 10108 (2006).
[CrossRef]

J. van Howe and C. Xu, J. Lightwave Technol. 24, 2662 (2006).
[CrossRef]

D. M. Marom, C. R. Doerr, M. A. Cappuzzo, C. Evans Yifan, A. Wong-Foy, L. T. Gomez, and S. Chandrasekhar, J. Lightwave Technol. 24, 241 (2006).
[CrossRef]

2004 (1)

Y. Chen and X. Li, Opt. Express 12, 5978 (2004).

2003 (3)

N. Q. Ngo, S. Y. Li, R. T. Zheng, S. C. Tjin, and P. Shum, J. Lightwave Technol. 21, 1575 (2003).
[CrossRef]

W. R. Zipfel, R. M. Williams, and W. W. Webb, Nat. Biotechnol. 21, 1368 (2003).
[CrossRef]

V. Iyer, B. E. Losavio, and P. Saggau, J. Biomed. Opt. 8, 471 (2003).
[CrossRef]

1999 (1)

1997 (2)

J. B. Guild, C. Xu, and W. W. Webb, Appl. Opt. 36, 401 (1997).
[CrossRef]

P. Tournois, Opt. Commun. 140, 245 (1997).
[CrossRef]

1990 (1)

1987 (1)

O. E. Martinez, IEEE J. Quantum Electron. 23, 59 (1987).
[CrossRef]

1984 (1)

Akturk, S.

S. Akturk, X. Gu, M. Kimmel, and R. Trebino, Opt. Express 14, 10108 (2006).
[CrossRef]

Backus, S.

Cappuzzo, M. A.

D. M. Marom, C. R. Doerr, M. A. Cappuzzo, C. Evans Yifan, A. Wong-Foy, L. T. Gomez, and S. Chandrasekhar, J. Lightwave Technol. 24, 241 (2006).
[CrossRef]

Chandrasekhar, S.

D. M. Marom, C. R. Doerr, M. A. Cappuzzo, C. Evans Yifan, A. Wong-Foy, L. T. Gomez, and S. Chandrasekhar, J. Lightwave Technol. 24, 241 (2006).
[CrossRef]

Chen, Y.

Y. Chen and X. Li, Opt. Express 12, 5978 (2004).

Doerr, C. R.

D. M. Marom, C. R. Doerr, M. A. Cappuzzo, C. Evans Yifan, A. Wong-Foy, L. T. Gomez, and S. Chandrasekhar, J. Lightwave Technol. 24, 241 (2006).
[CrossRef]

Durst, M. E.

M. E. Durst, G. Zhu, and C. Xu, Opt. Commun. 281, 1805 (2008).
[CrossRef]

Evans Yifan, C.

D. M. Marom, C. R. Doerr, M. A. Cappuzzo, C. Evans Yifan, A. Wong-Foy, L. T. Gomez, and S. Chandrasekhar, J. Lightwave Technol. 24, 241 (2006).
[CrossRef]

Fork, R. L.

Gomez, L. T.

D. M. Marom, C. R. Doerr, M. A. Cappuzzo, C. Evans Yifan, A. Wong-Foy, L. T. Gomez, and S. Chandrasekhar, J. Lightwave Technol. 24, 241 (2006).
[CrossRef]

Gordon, J. P.

Gu, X.

S. Akturk, X. Gu, M. Kimmel, and R. Trebino, Opt. Express 14, 10108 (2006).
[CrossRef]

Guild, J. B.

J. B. Guild, C. Xu, and W. W. Webb, Appl. Opt. 36, 401 (1997).
[CrossRef]

Iyer, V.

V. Iyer, B. E. Losavio, and P. Saggau, J. Biomed. Opt. 8, 471 (2003).
[CrossRef]

Kapteyn, H.

Kimmel, M.

S. Akturk, X. Gu, M. Kimmel, and R. Trebino, Opt. Express 14, 10108 (2006).
[CrossRef]

Leaird, D. E.

Li, S. Y.

N. Q. Ngo, S. Y. Li, R. T. Zheng, S. C. Tjin, and P. Shum, J. Lightwave Technol. 21, 1575 (2003).
[CrossRef]

Li, X.

Y. Chen and X. Li, Opt. Express 12, 5978 (2004).

Losavio, B. E.

V. Iyer, B. E. Losavio, and P. Saggau, J. Biomed. Opt. 8, 471 (2003).
[CrossRef]

Maginnis, K.

Marom, D. M.

D. M. Marom, C. R. Doerr, M. A. Cappuzzo, C. Evans Yifan, A. Wong-Foy, L. T. Gomez, and S. Chandrasekhar, J. Lightwave Technol. 24, 241 (2006).
[CrossRef]

Martinez, O. E.

Mourou, G.

Murnane, M.

Ngo, N. Q.

N. Q. Ngo, S. Y. Li, R. T. Zheng, S. C. Tjin, and P. Shum, J. Lightwave Technol. 21, 1575 (2003).
[CrossRef]

Patel, J. S.

Russek, U.

Saggau, P.

V. Iyer, B. E. Losavio, and P. Saggau, J. Biomed. Opt. 8, 471 (2003).
[CrossRef]

Shum, P.

N. Q. Ngo, S. Y. Li, R. T. Zheng, S. C. Tjin, and P. Shum, J. Lightwave Technol. 21, 1575 (2003).
[CrossRef]

Tjin, S. C.

N. Q. Ngo, S. Y. Li, R. T. Zheng, S. C. Tjin, and P. Shum, J. Lightwave Technol. 21, 1575 (2003).
[CrossRef]

Tournois, P.

P. Tournois, Opt. Commun. 140, 245 (1997).
[CrossRef]

Trebino, R.

S. Akturk, X. Gu, M. Kimmel, and R. Trebino, Opt. Express 14, 10108 (2006).
[CrossRef]

van Howe, J.

J. van Howe and C. Xu, J. Lightwave Technol. 24, 2662 (2006).
[CrossRef]

Vdovin, G.

Webb, W. W.

W. R. Zipfel, R. M. Williams, and W. W. Webb, Nat. Biotechnol. 21, 1368 (2003).
[CrossRef]

J. B. Guild, C. Xu, and W. W. Webb, Appl. Opt. 36, 401 (1997).
[CrossRef]

Weiner, A. M.

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, Nat. Biotechnol. 21, 1368 (2003).
[CrossRef]

Wong-Foy, A.

D. M. Marom, C. R. Doerr, M. A. Cappuzzo, C. Evans Yifan, A. Wong-Foy, L. T. Gomez, and S. Chandrasekhar, J. Lightwave Technol. 24, 241 (2006).
[CrossRef]

Wullert, J. R.

Xu, C.

M. E. Durst, G. Zhu, and C. Xu, Opt. Commun. 281, 1805 (2008).
[CrossRef]

J. van Howe and C. Xu, J. Lightwave Technol. 24, 2662 (2006).
[CrossRef]

J. B. Guild, C. Xu, and W. W. Webb, Appl. Opt. 36, 401 (1997).
[CrossRef]

Zeek, E.

Zheng, R. T.

N. Q. Ngo, S. Y. Li, R. T. Zheng, S. C. Tjin, and P. Shum, J. Lightwave Technol. 21, 1575 (2003).
[CrossRef]

Zhu, G.

M. E. Durst, G. Zhu, and C. Xu, Opt. Commun. 281, 1805 (2008).
[CrossRef]

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, and W. W. Webb, Nat. Biotechnol. 21, 1368 (2003).
[CrossRef]

Appl. Opt. (1)

J. B. Guild, C. Xu, and W. W. Webb, Appl. Opt. 36, 401 (1997).
[CrossRef]

IEEE J. Quantum Electron. (1)

O. E. Martinez, IEEE J. Quantum Electron. 23, 59 (1987).
[CrossRef]

J. Biomed. Opt. (1)

V. Iyer, B. E. Losavio, and P. Saggau, J. Biomed. Opt. 8, 471 (2003).
[CrossRef]

J. Lightwave Technol. (3)

N. Q. Ngo, S. Y. Li, R. T. Zheng, S. C. Tjin, and P. Shum, J. Lightwave Technol. 21, 1575 (2003).
[CrossRef]

J. van Howe and C. Xu, J. Lightwave Technol. 24, 2662 (2006).
[CrossRef]

D. M. Marom, C. R. Doerr, M. A. Cappuzzo, C. Evans Yifan, A. Wong-Foy, L. T. Gomez, and S. Chandrasekhar, J. Lightwave Technol. 24, 241 (2006).
[CrossRef]

Nat. Biotechnol. (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, Nat. Biotechnol. 21, 1368 (2003).
[CrossRef]

Opt. Commun. (2)

P. Tournois, Opt. Commun. 140, 245 (1997).
[CrossRef]

M. E. Durst, G. Zhu, and C. Xu, Opt. Commun. 281, 1805 (2008).
[CrossRef]

Opt. Express (2)

S. Akturk, X. Gu, M. Kimmel, and R. Trebino, Opt. Express 14, 10108 (2006).
[CrossRef]

Y. Chen and X. Li, Opt. Express 12, 5978 (2004).

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

GDD compensation device: folded 4f grating pair setup with a cylindrical lens at the Fourier plane.

Fig. 2
Fig. 2

Pulse width versus rotation angle of the cylindrical lens. Squares, autocorrelation data; solid curve, theoretical curve based on Eq. (3).

Fig. 3
Fig. 3

Interferometric second-order autocorrelations of the pulse exiting the dispersion compensation device (a) with maximum curvature ( θ = 0 ° ) and (b) with 2 m of SSMF at θ = 30 ° .

Fig. 4
Fig. 4

(a) Normalized two-photon induced current (log scale) as a function of the rotation angle of the cylindrical lens. Insets, normalized PSF of output beam at θ = 0 ° and θ = 90 ° . (b) Normalized power coupled into an SSMF as a function of cylindrical lens angle. Inset, enlarged view of the power variation.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

z = n d + ( n 1 ) [ R 2 x 2 R ] ,
k x 2 f eff = 1 2 GDD ( x Ω 2 L ) 2 ,
GDD = 2 k f eff ( 2 L Ω ) 2 = 4 π λ f cyl ( 2 L Ω cos θ ) 2 .

Metrics