Abstract

We present a new structure that combines a metal-dielectric-metal sandwich with a periodic structure to form a plasmon polariton photonic crystal. Three-dimensional finite-difference time-domain simulations show a clear bandgap in the terahertz regime. We exploited this property by adding a defect to the crystal, which produces a cavity with a quality factor of 23.3 at a wavelength of 3.45 μm. Despite the small Q factor, the ultrasmall sensing volume of 15 zeptoliters produces an extremely large Purcell constant of 4.8×106. Compared to photonic crystals with similar Purcell constant, the bandwidth is several orders of magnitude larger, or about 7 THz, ensuring high tolerances to manufacturing parameters, and environmental changes, as well as a high specificity owing to the possibility of broadband spectral fingerprint detection.

© 2009 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription