Abstract

We propose a silicon ring-based optical modulation method to perform chirp-free optical modulations. In this scheme, we locate the light to be modulated at the resonance of the ring and tune the coupling coefficient between the ring and the straight waveguide by using a push–pull coupling structure. The chirp-free phase modulation can be achieved by varying the coupling coefficient in a large range, which can modify the coupling condition of the ring such that the input light experiences an abrupt phase shift of π at the output. If the coupling coefficient is adjusted in a small range such that the coupling condition of the ring is kept unchanged, only the intensity of the light will be modulated. This leads to chirp-free intensity modulation. Our simulations performed at 10Gbitss confirm the feasibility of the proposal.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. A. Barrios and M. Lipson, J. Appl. Phys. 96, 6008 (2004).
    [CrossRef]
  2. R. D. Kekatpure and M. L. Brongersma, Proc. SPIE 5926, 59260G (2005), paper G1.
    [CrossRef]
  3. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, Opt. Express 15, 430 (2007).
    [CrossRef] [PubMed]
  4. C. Li, L. Zhou, and A. W. Poon, Opt. Express 15, 5069 (2007).
    [CrossRef] [PubMed]
  5. L. Zhang, J.-Y. Yang, M. Song, Y. Li, R. G. Beausoleil, and A. E. Willner, Opt. Lett. 33, 1428 (2008).
    [CrossRef] [PubMed]
  6. S. Manipatruni, R. K. Dokania, B. Schmidt, N. Sherwood-Droz, C. B. Poitras, A. B. Apsel, and M. Lipson, Opt. Lett. 33, 2185 (2008).
    [CrossRef] [PubMed]
  7. A. Yariv, IEEE Photon. Technol. Lett. 14, 483 (2002).
    [CrossRef]

2008 (2)

2007 (2)

2005 (1)

R. D. Kekatpure and M. L. Brongersma, Proc. SPIE 5926, 59260G (2005), paper G1.
[CrossRef]

2004 (1)

C. A. Barrios and M. Lipson, J. Appl. Phys. 96, 6008 (2004).
[CrossRef]

2002 (1)

A. Yariv, IEEE Photon. Technol. Lett. 14, 483 (2002).
[CrossRef]

Apsel, A. B.

Barrios, C. A.

C. A. Barrios and M. Lipson, J. Appl. Phys. 96, 6008 (2004).
[CrossRef]

Beausoleil, R. G.

Brongersma, M. L.

R. D. Kekatpure and M. L. Brongersma, Proc. SPIE 5926, 59260G (2005), paper G1.
[CrossRef]

Dokania, R. K.

Kekatpure, R. D.

R. D. Kekatpure and M. L. Brongersma, Proc. SPIE 5926, 59260G (2005), paper G1.
[CrossRef]

Li, C.

Li, Y.

Lipson, M.

Manipatruni, S.

Poitras, C. B.

Poon, A. W.

Schmidt, B.

Shakya, J.

Sherwood-Droz, N.

Song, M.

Willner, A. E.

Xu, Q.

Yang, J.-Y.

Yariv, A.

A. Yariv, IEEE Photon. Technol. Lett. 14, 483 (2002).
[CrossRef]

Zhang, L.

Zhou, L.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Different coupling conditions: (a) Overcoupling, (b) critical coupling, and (c) undercoupling.

Fig. 2
Fig. 2

Push–pull coupling ring, where the coupling region consists of two 3 dB couplers with an MZI in between.

Fig. 3
Fig. 3

Modulation curves of the push–pull coupling ring; (a) t = 0.63 and (b) t = 0.33 .

Fig. 4
Fig. 4

Chirp-free modulations with the assumption that the input light is precisely at the resonance. (a) Amplitude and (b) phase of the PSK signal, (c) and (d) for the CSRZ signal and (e) and (f) for the NRZ signal.

Fig. 5
Fig. 5

CSRZ modulation with the wavelength misalignment between the input light and the resonance. (a) Amplitude and (b) phase for the misalignment of 0.001 nm and (c) and (d) for the misalignment of 0.01 nm .

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

[ b 0 b 1 ] = [ t j k j k t ] [ a 0 a 1 ] ,
a 1 = b 1 e α L 2 e β L ,
b 0 = ( t k 2 a e β L 1 t a e β L ) a 0 ,
b 0 = ( t k 2 a 1 t a ) a 0 .
[ b 0 b 1 ] = [ j sin Δ ϕ 2 j cos Δ ϕ 2 j cos Δ ϕ 2 j sin Δ ϕ 2 ] [ a 0 a 1 ] ,
b 0 = e j β L x ( j sin Δ ϕ 2 t a e j β L 1 j t a sin Δ ϕ 2 e j β L ) a 0 ,
b 0 = j e j β L x ( t a sin Δ ϕ 2 1 j t a sin Δ ϕ 2 ) a 0 .
cos Δ ϕ 2 2 cos 2 Δ ϕ 1 2 < ε .
2 a 2 t 2 1 + a 2 t 2 < ε .

Metrics