Abstract

We report on parametric oscillation in sodium atomic vapor by using an external cavity. Output powers of 56mW are obtained for both the signal and idler waves with the input coupling power of 290mW, resulting in a conversion efficiency of 39%. The signal and idler frequencies are either upshifted or downshifted from the coupling frequency by the amount of the Na hyperfine splitting frequency, and the two waves are found to be strongly temporally correlated.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge U. Press, 1997).
  2. M. D. Lukin, P. R. Hemmer, M. Löffler, and M. O. Scully, Phys. Rev. Lett. 81, 2675 (1998).
    [CrossRef]
  3. A. S. Zibrov, M. D. Lukin, and M. O. Scully, Phys. Rev. Lett. 83, 4049 (1999).
    [CrossRef]
  4. C. F. McCormick, V. Boyer, E. Arimondo, and P. D. Lett, Opt. Lett. 32, 178 (2007).
    [CrossRef]
  5. V. Boyer, C. F. McCormick, E. Arimondo, and P. D. Lett, Phys. Rev. Lett. 99, 143601 (2007).
    [CrossRef] [PubMed]
  6. K. Harada, M. Ogata, and M. Mitsunaga, Opt. Lett. 32, 1111 (2007).
    [CrossRef] [PubMed]
  7. K. Harada, N. Hayashi, K. Mori, and M. Mitsunaga, J. Opt. Soc. Am. B 25, 40 (2008).
    [CrossRef]
  8. K. Harada, K. Mori, J. Okuma, N. Hayashi, and M. Mitsunaga, Phys. Rev. A 78, 013809 (2008).
    [CrossRef]
  9. P. Kumar and J. H. Shapiro, Opt. Lett. 10, 226 (1985).
    [CrossRef] [PubMed]
  10. J. Donoghue, M. Cronin-Golomb, J. S. Kane, and P. R. Hemmer, Opt. Lett. 16, 1313 (1991).
    [CrossRef] [PubMed]
  11. M. Poelker, P. Kumar, and S. T. Ho, Opt. Lett. 16, 1853 (1991).
    [CrossRef] [PubMed]
  12. M. Poelker and P. Kumar, Opt. Lett. 17, 399 (1992).
    [CrossRef] [PubMed]
  13. P. R. Hemmer, D. P. Katz, J. Donoghue, M. Cronin-Golomb, M. S. Shahriar, and P. Kumar, Opt. Lett. 20, 982 (1995).
    [CrossRef] [PubMed]
  14. D. V. Wick, M. T. Gruneisen, and P. R. Peterson, Opt. Commun. 148, 113 (1998).
    [CrossRef]
  15. J. E. Bjorkholm and A. Ashkin, Phys. Rev. Lett. 32, 129 (1974).
    [CrossRef]
  16. V. A. Sautenkov, Y. V. Rostovtsev, and M. O. Scully, Phys. Rev. A 72, 065801 (2005).
    [CrossRef]

2008 (2)

K. Harada, N. Hayashi, K. Mori, and M. Mitsunaga, J. Opt. Soc. Am. B 25, 40 (2008).
[CrossRef]

K. Harada, K. Mori, J. Okuma, N. Hayashi, and M. Mitsunaga, Phys. Rev. A 78, 013809 (2008).
[CrossRef]

2007 (3)

2005 (1)

V. A. Sautenkov, Y. V. Rostovtsev, and M. O. Scully, Phys. Rev. A 72, 065801 (2005).
[CrossRef]

1999 (1)

A. S. Zibrov, M. D. Lukin, and M. O. Scully, Phys. Rev. Lett. 83, 4049 (1999).
[CrossRef]

1998 (2)

M. D. Lukin, P. R. Hemmer, M. Löffler, and M. O. Scully, Phys. Rev. Lett. 81, 2675 (1998).
[CrossRef]

D. V. Wick, M. T. Gruneisen, and P. R. Peterson, Opt. Commun. 148, 113 (1998).
[CrossRef]

1995 (1)

1992 (1)

1991 (2)

1985 (1)

1974 (1)

J. E. Bjorkholm and A. Ashkin, Phys. Rev. Lett. 32, 129 (1974).
[CrossRef]

Arimondo, E.

C. F. McCormick, V. Boyer, E. Arimondo, and P. D. Lett, Opt. Lett. 32, 178 (2007).
[CrossRef]

V. Boyer, C. F. McCormick, E. Arimondo, and P. D. Lett, Phys. Rev. Lett. 99, 143601 (2007).
[CrossRef] [PubMed]

Ashkin, A.

J. E. Bjorkholm and A. Ashkin, Phys. Rev. Lett. 32, 129 (1974).
[CrossRef]

Bjorkholm, J. E.

J. E. Bjorkholm and A. Ashkin, Phys. Rev. Lett. 32, 129 (1974).
[CrossRef]

Boyer, V.

V. Boyer, C. F. McCormick, E. Arimondo, and P. D. Lett, Phys. Rev. Lett. 99, 143601 (2007).
[CrossRef] [PubMed]

C. F. McCormick, V. Boyer, E. Arimondo, and P. D. Lett, Opt. Lett. 32, 178 (2007).
[CrossRef]

Cronin-Golomb, M.

Donoghue, J.

Gruneisen, M. T.

D. V. Wick, M. T. Gruneisen, and P. R. Peterson, Opt. Commun. 148, 113 (1998).
[CrossRef]

Harada, K.

Hayashi, N.

K. Harada, N. Hayashi, K. Mori, and M. Mitsunaga, J. Opt. Soc. Am. B 25, 40 (2008).
[CrossRef]

K. Harada, K. Mori, J. Okuma, N. Hayashi, and M. Mitsunaga, Phys. Rev. A 78, 013809 (2008).
[CrossRef]

Hemmer, P. R.

Ho, S. T.

Kane, J. S.

Katz, D. P.

Kumar, P.

Lett, P. D.

V. Boyer, C. F. McCormick, E. Arimondo, and P. D. Lett, Phys. Rev. Lett. 99, 143601 (2007).
[CrossRef] [PubMed]

C. F. McCormick, V. Boyer, E. Arimondo, and P. D. Lett, Opt. Lett. 32, 178 (2007).
[CrossRef]

Löffler, M.

M. D. Lukin, P. R. Hemmer, M. Löffler, and M. O. Scully, Phys. Rev. Lett. 81, 2675 (1998).
[CrossRef]

Lukin, M. D.

A. S. Zibrov, M. D. Lukin, and M. O. Scully, Phys. Rev. Lett. 83, 4049 (1999).
[CrossRef]

M. D. Lukin, P. R. Hemmer, M. Löffler, and M. O. Scully, Phys. Rev. Lett. 81, 2675 (1998).
[CrossRef]

McCormick, C. F.

C. F. McCormick, V. Boyer, E. Arimondo, and P. D. Lett, Opt. Lett. 32, 178 (2007).
[CrossRef]

V. Boyer, C. F. McCormick, E. Arimondo, and P. D. Lett, Phys. Rev. Lett. 99, 143601 (2007).
[CrossRef] [PubMed]

Mitsunaga, M.

Mori, K.

K. Harada, N. Hayashi, K. Mori, and M. Mitsunaga, J. Opt. Soc. Am. B 25, 40 (2008).
[CrossRef]

K. Harada, K. Mori, J. Okuma, N. Hayashi, and M. Mitsunaga, Phys. Rev. A 78, 013809 (2008).
[CrossRef]

Ogata, M.

Okuma, J.

K. Harada, K. Mori, J. Okuma, N. Hayashi, and M. Mitsunaga, Phys. Rev. A 78, 013809 (2008).
[CrossRef]

Peterson, P. R.

D. V. Wick, M. T. Gruneisen, and P. R. Peterson, Opt. Commun. 148, 113 (1998).
[CrossRef]

Poelker, M.

Rostovtsev, Y. V.

V. A. Sautenkov, Y. V. Rostovtsev, and M. O. Scully, Phys. Rev. A 72, 065801 (2005).
[CrossRef]

Sautenkov, V. A.

V. A. Sautenkov, Y. V. Rostovtsev, and M. O. Scully, Phys. Rev. A 72, 065801 (2005).
[CrossRef]

Scully, M. O.

V. A. Sautenkov, Y. V. Rostovtsev, and M. O. Scully, Phys. Rev. A 72, 065801 (2005).
[CrossRef]

A. S. Zibrov, M. D. Lukin, and M. O. Scully, Phys. Rev. Lett. 83, 4049 (1999).
[CrossRef]

M. D. Lukin, P. R. Hemmer, M. Löffler, and M. O. Scully, Phys. Rev. Lett. 81, 2675 (1998).
[CrossRef]

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge U. Press, 1997).

Shahriar, M. S.

Shapiro, J. H.

Wick, D. V.

D. V. Wick, M. T. Gruneisen, and P. R. Peterson, Opt. Commun. 148, 113 (1998).
[CrossRef]

Zibrov, A. S.

A. S. Zibrov, M. D. Lukin, and M. O. Scully, Phys. Rev. Lett. 83, 4049 (1999).
[CrossRef]

Zubairy, M. S.

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge U. Press, 1997).

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

D. V. Wick, M. T. Gruneisen, and P. R. Peterson, Opt. Commun. 148, 113 (1998).
[CrossRef]

Opt. Lett. (7)

Phys. Rev. A (2)

K. Harada, K. Mori, J. Okuma, N. Hayashi, and M. Mitsunaga, Phys. Rev. A 78, 013809 (2008).
[CrossRef]

V. A. Sautenkov, Y. V. Rostovtsev, and M. O. Scully, Phys. Rev. A 72, 065801 (2005).
[CrossRef]

Phys. Rev. Lett. (4)

J. E. Bjorkholm and A. Ashkin, Phys. Rev. Lett. 32, 129 (1974).
[CrossRef]

V. Boyer, C. F. McCormick, E. Arimondo, and P. D. Lett, Phys. Rev. Lett. 99, 143601 (2007).
[CrossRef] [PubMed]

M. D. Lukin, P. R. Hemmer, M. Löffler, and M. O. Scully, Phys. Rev. Lett. 81, 2675 (1998).
[CrossRef]

A. S. Zibrov, M. D. Lukin, and M. O. Scully, Phys. Rev. Lett. 83, 4049 (1999).
[CrossRef]

Other (1)

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge U. Press, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the experimental setup. RDL, ring dye laser; PBSs, polarizing beam splitters; ND, neutral density filter; PDs, photodetectors.

Fig. 2
Fig. 2

Typical probe gain spectrum and anti-Stokes gain spectrum as a function of the coupling frequency ω c in the case of parametric amplification. The saturated absorption spectrum is also shown for a frequency reference. Inset, energy-level diagram.

Fig. 3
Fig. 3

Typical oscillation spectra of signal and idler. Input coupling power is 290 mW . Output mirror reflectivity R out is 90%. The saturated absorption spectrum is also shown for a frequency reference.

Fig. 4
Fig. 4

(a) Coupling, Stokes and anti-Stokes frequency spectra along with cavity mode spectrum. (b) Typical signal oscillation spectrum. Arrows with open (filled) circles show the case when anti-Stokes (Stokes) frequency coincides with a cavity mode. The saturated absorption spectrum is also shown for a frequency reference.

Fig. 5
Fig. 5

(a) Typical temporal waveforms of the signal wave and the idler wave and their subtraction. Input coupling power is 400 mW . (b) Cross correlation g ( τ ) of signal and idler waveforms.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

G ( 2 ) ( τ ) = δ f s ( t ) δ f i ( t + τ ) δ f s ( t ) 2 δ f i ( t + τ ) 2 ,

Metrics