Abstract

It is shown theoretically that a nonchiral, two-dimensional array of metallic spheres exhibits optical activity as manifested in calculations of circular dichroism. The metallic spheres occupy the sites of a rectangular lattice, and for off-normal incidence they show a strong circular-dichroism effect around the surface-plasmon frequencies. The optical activity is a result of the rectangular symmetry of the lattice, which gives rise to different polarization modes of the crystal along the two orthogonal primitive lattice vectors. These two polarization modes result in a net polar vector that forms a chiral triad with the wave vector and the vector normal to the plane of spheres. The formation of this chiral triad is responsible for the observed circular dichroism, although the structure itself is intrinsically nonchiral.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
    [CrossRef] [PubMed]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
    [CrossRef] [PubMed]
  3. J. B. Pendry, Science 306, 1353 (2004).
    [CrossRef] [PubMed]
  4. A. Lakhtakia, Microwave Opt. Technol. Lett. 33, 96 (2002).
    [CrossRef]
  5. S. Tretyakov, I. Nefedov, A. Shivola, S. Maslovski, and C. Simovski, J. Electromagn. Waves Appl. 17, 695 (2003).
    [CrossRef]
  6. T. G. Mackay and A. Lakhtakia, Phys. Rev. E 69, 026602 (2004).
    [CrossRef]
  7. T. G. Mackay and A. Lakhtakia, New J. Phys. 7, 165 (2005).
    [CrossRef]
  8. C. Monzon and D. W. Forester, Phys. Rev. Lett. 95, 123904 (2005).
    [CrossRef] [PubMed]
  9. S. Tretyakov, A. Shivola, and L. Jylhä, Photon. Nanostruct. 3, 107 (2005).
  10. J. Q. Shen, Phys. Rev. B 73, 045113 (2006).
    [CrossRef]
  11. V. M. Agranovitch, Yu. N. Garstein, and A. A. Zakhidov, Phys. Rev. B 73, 045114 (2006).
    [CrossRef]
  12. V. Yannopapas, J. Phys. Condens. Matter 18, 6883 (2006).
    [CrossRef]
  13. A. Baev, M. Samoc, P. N. Prasad, M. Krykunov, and J. Autschbach, Opt. Express 15, 5730 (2007).
    [CrossRef] [PubMed]
  14. D.-H. Kwon, D. H. Werner, A. V. Kildishev, and V. M. Shalaev, Opt. Express 16, 11822 (2008).
    [CrossRef] [PubMed]
  15. A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, Phys. Rev. Lett. 97, 177401 (2006).
    [CrossRef] [PubMed]
  16. E. Plum, J. Dong, J. Zhou, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zhelude, Phys. Rev. B 79, 035407 (2008).
    [CrossRef]
  17. E. Plum, V. A. Fedotov, and N. I. Zheludev, Appl. Phys. Lett. 93, 191911 (2008).
    [CrossRef]
  18. E. Plum, V. A. Fedotov, and N. I. Zheludev, arXiv.org:0807.0523v1 (2008).
  19. M. Decker, M. W. Klein, M. Wegener, and S. Linden, Opt. Lett. 32, 856 (2007).
    [CrossRef] [PubMed]
  20. E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, Appl. Phys. Lett. 90, 223113 (2007).
    [CrossRef]
  21. A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, Nano Lett. 8, 2940 (2008).
    [CrossRef] [PubMed]
  22. N. Stefanou, V. Karathanos, and A. Modinos, J. Phys. Condens. Matter 4, 7389 (1992).
    [CrossRef]
  23. N. Stefanou, V. Yannopapas, and A. Modinos, Comput. Phys. Commun. 113, 49 (1998).
    [CrossRef]
  24. N. Stefanou, V. Yannopapas, and A. Modinos, Comput. Phys. Commun. 132, 189 (2000).
    [CrossRef]
  25. V. Yannopapas and N. Stefanou, Phys. Rev. B 69, 012408 (2004).
    [CrossRef]
  26. C. W. Bunn, Chemical Crystallography (Oxford U. Press, 1945).
  27. A. Taleb, V. Russier, A. Courty, and M. P. Pileni, Phys. Rev. B 59, 13350 (1999).
    [CrossRef]

2008 (4)

E. Plum, J. Dong, J. Zhou, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zhelude, Phys. Rev. B 79, 035407 (2008).
[CrossRef]

E. Plum, V. A. Fedotov, and N. I. Zheludev, Appl. Phys. Lett. 93, 191911 (2008).
[CrossRef]

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, Nano Lett. 8, 2940 (2008).
[CrossRef] [PubMed]

D.-H. Kwon, D. H. Werner, A. V. Kildishev, and V. M. Shalaev, Opt. Express 16, 11822 (2008).
[CrossRef] [PubMed]

2007 (3)

2006 (4)

J. Q. Shen, Phys. Rev. B 73, 045113 (2006).
[CrossRef]

V. M. Agranovitch, Yu. N. Garstein, and A. A. Zakhidov, Phys. Rev. B 73, 045114 (2006).
[CrossRef]

V. Yannopapas, J. Phys. Condens. Matter 18, 6883 (2006).
[CrossRef]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, Phys. Rev. Lett. 97, 177401 (2006).
[CrossRef] [PubMed]

2005 (2)

T. G. Mackay and A. Lakhtakia, New J. Phys. 7, 165 (2005).
[CrossRef]

C. Monzon and D. W. Forester, Phys. Rev. Lett. 95, 123904 (2005).
[CrossRef] [PubMed]

2004 (3)

T. G. Mackay and A. Lakhtakia, Phys. Rev. E 69, 026602 (2004).
[CrossRef]

J. B. Pendry, Science 306, 1353 (2004).
[CrossRef] [PubMed]

V. Yannopapas and N. Stefanou, Phys. Rev. B 69, 012408 (2004).
[CrossRef]

2003 (1)

S. Tretyakov, I. Nefedov, A. Shivola, S. Maslovski, and C. Simovski, J. Electromagn. Waves Appl. 17, 695 (2003).
[CrossRef]

2002 (1)

A. Lakhtakia, Microwave Opt. Technol. Lett. 33, 96 (2002).
[CrossRef]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
[CrossRef] [PubMed]

2000 (2)

J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef] [PubMed]

N. Stefanou, V. Yannopapas, and A. Modinos, Comput. Phys. Commun. 132, 189 (2000).
[CrossRef]

1999 (1)

A. Taleb, V. Russier, A. Courty, and M. P. Pileni, Phys. Rev. B 59, 13350 (1999).
[CrossRef]

1998 (1)

N. Stefanou, V. Yannopapas, and A. Modinos, Comput. Phys. Commun. 113, 49 (1998).
[CrossRef]

1992 (1)

N. Stefanou, V. Karathanos, and A. Modinos, J. Phys. Condens. Matter 4, 7389 (1992).
[CrossRef]

Agranovitch, V. M.

V. M. Agranovitch, Yu. N. Garstein, and A. A. Zakhidov, Phys. Rev. B 73, 045114 (2006).
[CrossRef]

Autschbach, J.

Baev, A.

Bunn, C. W.

C. W. Bunn, Chemical Crystallography (Oxford U. Press, 1945).

Chen, Y.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, Nano Lett. 8, 2940 (2008).
[CrossRef] [PubMed]

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, Appl. Phys. Lett. 90, 223113 (2007).
[CrossRef]

Courty, A.

A. Taleb, V. Russier, A. Courty, and M. P. Pileni, Phys. Rev. B 59, 13350 (1999).
[CrossRef]

Decker, M.

Dong, J.

E. Plum, J. Dong, J. Zhou, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zhelude, Phys. Rev. B 79, 035407 (2008).
[CrossRef]

Fedotov, V. A.

E. Plum, J. Dong, J. Zhou, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zhelude, Phys. Rev. B 79, 035407 (2008).
[CrossRef]

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, Nano Lett. 8, 2940 (2008).
[CrossRef] [PubMed]

E. Plum, V. A. Fedotov, and N. I. Zheludev, Appl. Phys. Lett. 93, 191911 (2008).
[CrossRef]

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, Appl. Phys. Lett. 90, 223113 (2007).
[CrossRef]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, Phys. Rev. Lett. 97, 177401 (2006).
[CrossRef] [PubMed]

E. Plum, V. A. Fedotov, and N. I. Zheludev, arXiv.org:0807.0523v1 (2008).

Forester, D. W.

C. Monzon and D. W. Forester, Phys. Rev. Lett. 95, 123904 (2005).
[CrossRef] [PubMed]

Garstein, Yu. N.

V. M. Agranovitch, Yu. N. Garstein, and A. A. Zakhidov, Phys. Rev. B 73, 045114 (2006).
[CrossRef]

Jylhä, L.

S. Tretyakov, A. Shivola, and L. Jylhä, Photon. Nanostruct. 3, 107 (2005).

Karathanos, V.

N. Stefanou, V. Karathanos, and A. Modinos, J. Phys. Condens. Matter 4, 7389 (1992).
[CrossRef]

Khardikov, V. V.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, Nano Lett. 8, 2940 (2008).
[CrossRef] [PubMed]

Kildishev, A. V.

Klein, M. W.

Koschny, T.

E. Plum, J. Dong, J. Zhou, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zhelude, Phys. Rev. B 79, 035407 (2008).
[CrossRef]

Krykunov, M.

Kwon, D.-H.

Lakhtakia, A.

T. G. Mackay and A. Lakhtakia, New J. Phys. 7, 165 (2005).
[CrossRef]

T. G. Mackay and A. Lakhtakia, Phys. Rev. E 69, 026602 (2004).
[CrossRef]

A. Lakhtakia, Microwave Opt. Technol. Lett. 33, 96 (2002).
[CrossRef]

Linden, S.

Mackay, T. G.

T. G. Mackay and A. Lakhtakia, New J. Phys. 7, 165 (2005).
[CrossRef]

T. G. Mackay and A. Lakhtakia, Phys. Rev. E 69, 026602 (2004).
[CrossRef]

Maslovski, S.

S. Tretyakov, I. Nefedov, A. Shivola, S. Maslovski, and C. Simovski, J. Electromagn. Waves Appl. 17, 695 (2003).
[CrossRef]

Modinos, A.

N. Stefanou, V. Yannopapas, and A. Modinos, Comput. Phys. Commun. 132, 189 (2000).
[CrossRef]

N. Stefanou, V. Yannopapas, and A. Modinos, Comput. Phys. Commun. 113, 49 (1998).
[CrossRef]

N. Stefanou, V. Karathanos, and A. Modinos, J. Phys. Condens. Matter 4, 7389 (1992).
[CrossRef]

Monzon, C.

C. Monzon and D. W. Forester, Phys. Rev. Lett. 95, 123904 (2005).
[CrossRef] [PubMed]

Nefedov, I.

S. Tretyakov, I. Nefedov, A. Shivola, S. Maslovski, and C. Simovski, J. Electromagn. Waves Appl. 17, 695 (2003).
[CrossRef]

Pendry, J. B.

J. B. Pendry, Science 306, 1353 (2004).
[CrossRef] [PubMed]

J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef] [PubMed]

Pileni, M. P.

A. Taleb, V. Russier, A. Courty, and M. P. Pileni, Phys. Rev. B 59, 13350 (1999).
[CrossRef]

Plum, E.

E. Plum, J. Dong, J. Zhou, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zhelude, Phys. Rev. B 79, 035407 (2008).
[CrossRef]

E. Plum, V. A. Fedotov, and N. I. Zheludev, Appl. Phys. Lett. 93, 191911 (2008).
[CrossRef]

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, Appl. Phys. Lett. 90, 223113 (2007).
[CrossRef]

E. Plum, V. A. Fedotov, and N. I. Zheludev, arXiv.org:0807.0523v1 (2008).

Prasad, P. N.

Prosvirnin, S. L.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, Nano Lett. 8, 2940 (2008).
[CrossRef] [PubMed]

Rogacheva, A. V.

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, Phys. Rev. Lett. 97, 177401 (2006).
[CrossRef] [PubMed]

Russier, V.

A. Taleb, V. Russier, A. Courty, and M. P. Pileni, Phys. Rev. B 59, 13350 (1999).
[CrossRef]

Samoc, M.

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
[CrossRef] [PubMed]

Schwanecke, A. S.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, Nano Lett. 8, 2940 (2008).
[CrossRef] [PubMed]

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, Appl. Phys. Lett. 90, 223113 (2007).
[CrossRef]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, Phys. Rev. Lett. 97, 177401 (2006).
[CrossRef] [PubMed]

Shalaev, V. M.

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
[CrossRef] [PubMed]

Shen, J. Q.

J. Q. Shen, Phys. Rev. B 73, 045113 (2006).
[CrossRef]

Shivola, A.

S. Tretyakov, I. Nefedov, A. Shivola, S. Maslovski, and C. Simovski, J. Electromagn. Waves Appl. 17, 695 (2003).
[CrossRef]

S. Tretyakov, A. Shivola, and L. Jylhä, Photon. Nanostruct. 3, 107 (2005).

Simovski, C.

S. Tretyakov, I. Nefedov, A. Shivola, S. Maslovski, and C. Simovski, J. Electromagn. Waves Appl. 17, 695 (2003).
[CrossRef]

Smith, D. R.

R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
[CrossRef] [PubMed]

Soukoulis, C. M.

E. Plum, J. Dong, J. Zhou, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zhelude, Phys. Rev. B 79, 035407 (2008).
[CrossRef]

Stefanou, N.

V. Yannopapas and N. Stefanou, Phys. Rev. B 69, 012408 (2004).
[CrossRef]

N. Stefanou, V. Yannopapas, and A. Modinos, Comput. Phys. Commun. 132, 189 (2000).
[CrossRef]

N. Stefanou, V. Yannopapas, and A. Modinos, Comput. Phys. Commun. 113, 49 (1998).
[CrossRef]

N. Stefanou, V. Karathanos, and A. Modinos, J. Phys. Condens. Matter 4, 7389 (1992).
[CrossRef]

Taleb, A.

A. Taleb, V. Russier, A. Courty, and M. P. Pileni, Phys. Rev. B 59, 13350 (1999).
[CrossRef]

Tretyakov, S.

S. Tretyakov, I. Nefedov, A. Shivola, S. Maslovski, and C. Simovski, J. Electromagn. Waves Appl. 17, 695 (2003).
[CrossRef]

S. Tretyakov, A. Shivola, and L. Jylhä, Photon. Nanostruct. 3, 107 (2005).

Wegener, M.

Werner, D. H.

Yannopapas, V.

V. Yannopapas, J. Phys. Condens. Matter 18, 6883 (2006).
[CrossRef]

V. Yannopapas and N. Stefanou, Phys. Rev. B 69, 012408 (2004).
[CrossRef]

N. Stefanou, V. Yannopapas, and A. Modinos, Comput. Phys. Commun. 132, 189 (2000).
[CrossRef]

N. Stefanou, V. Yannopapas, and A. Modinos, Comput. Phys. Commun. 113, 49 (1998).
[CrossRef]

Zakhidov, A. A.

V. M. Agranovitch, Yu. N. Garstein, and A. A. Zakhidov, Phys. Rev. B 73, 045114 (2006).
[CrossRef]

Zhelude, N. I.

E. Plum, J. Dong, J. Zhou, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zhelude, Phys. Rev. B 79, 035407 (2008).
[CrossRef]

Zheludev, N. I.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, Nano Lett. 8, 2940 (2008).
[CrossRef] [PubMed]

E. Plum, V. A. Fedotov, and N. I. Zheludev, Appl. Phys. Lett. 93, 191911 (2008).
[CrossRef]

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, Appl. Phys. Lett. 90, 223113 (2007).
[CrossRef]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, Phys. Rev. Lett. 97, 177401 (2006).
[CrossRef] [PubMed]

E. Plum, V. A. Fedotov, and N. I. Zheludev, arXiv.org:0807.0523v1 (2008).

Zhou, J.

E. Plum, J. Dong, J. Zhou, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zhelude, Phys. Rev. B 79, 035407 (2008).
[CrossRef]

Appl. Phys. Lett. (2)

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, Appl. Phys. Lett. 90, 223113 (2007).
[CrossRef]

E. Plum, V. A. Fedotov, and N. I. Zheludev, Appl. Phys. Lett. 93, 191911 (2008).
[CrossRef]

Comput. Phys. Commun. (2)

N. Stefanou, V. Yannopapas, and A. Modinos, Comput. Phys. Commun. 113, 49 (1998).
[CrossRef]

N. Stefanou, V. Yannopapas, and A. Modinos, Comput. Phys. Commun. 132, 189 (2000).
[CrossRef]

J. Electromagn. Waves Appl. (1)

S. Tretyakov, I. Nefedov, A. Shivola, S. Maslovski, and C. Simovski, J. Electromagn. Waves Appl. 17, 695 (2003).
[CrossRef]

J. Phys. Condens. Matter (2)

V. Yannopapas, J. Phys. Condens. Matter 18, 6883 (2006).
[CrossRef]

N. Stefanou, V. Karathanos, and A. Modinos, J. Phys. Condens. Matter 4, 7389 (1992).
[CrossRef]

Microwave Opt. Technol. Lett. (1)

A. Lakhtakia, Microwave Opt. Technol. Lett. 33, 96 (2002).
[CrossRef]

Nano Lett. (1)

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, Nano Lett. 8, 2940 (2008).
[CrossRef] [PubMed]

New J. Phys. (1)

T. G. Mackay and A. Lakhtakia, New J. Phys. 7, 165 (2005).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (5)

E. Plum, J. Dong, J. Zhou, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zhelude, Phys. Rev. B 79, 035407 (2008).
[CrossRef]

A. Taleb, V. Russier, A. Courty, and M. P. Pileni, Phys. Rev. B 59, 13350 (1999).
[CrossRef]

J. Q. Shen, Phys. Rev. B 73, 045113 (2006).
[CrossRef]

V. M. Agranovitch, Yu. N. Garstein, and A. A. Zakhidov, Phys. Rev. B 73, 045114 (2006).
[CrossRef]

V. Yannopapas and N. Stefanou, Phys. Rev. B 69, 012408 (2004).
[CrossRef]

Phys. Rev. E (1)

T. G. Mackay and A. Lakhtakia, Phys. Rev. E 69, 026602 (2004).
[CrossRef]

Phys. Rev. Lett. (3)

J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef] [PubMed]

C. Monzon and D. W. Forester, Phys. Rev. Lett. 95, 123904 (2005).
[CrossRef] [PubMed]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, Phys. Rev. Lett. 97, 177401 (2006).
[CrossRef] [PubMed]

Science (2)

R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
[CrossRef] [PubMed]

J. B. Pendry, Science 306, 1353 (2004).
[CrossRef] [PubMed]

Other (3)

S. Tretyakov, A. Shivola, and L. Jylhä, Photon. Nanostruct. 3, 107 (2005).

C. W. Bunn, Chemical Crystallography (Oxford U. Press, 1945).

E. Plum, V. A. Fedotov, and N. I. Zheludev, arXiv.org:0807.0523v1 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Rectangular array of plasma spheres, where the sides of the unit cell are denoted by a and b. θ is the angle between the incident wave vector k and the vector n, which is normal to the plane of spheres ( x y plane). φ is the angle between the parallel (to the x y plane) component of the wave vector and the x axis.

Fig. 2
Fig. 2

(a) Absorbance spectra for right- (solid curve) and left- (dashed curve) circularly polarized light incident at angles θ = φ = 45 ° (see Fig. 1 for their definition) on a rectangular ( a = b 2 = c ω p ) array of plasma spheres ( S = 0.3 c ω p ) . (b) Corresponding circular dichroism spectrum of the above system of plasma spheres.

Fig. 3
Fig. 3

Circular dichroism spectra for θ = 45 ° and for various values of the angle φ (shown in the inset) for the array of plasma spheres of Fig. 2.

Fig. 4
Fig. 4

Circular dichroism spectra for θ = φ = 45 ° and different rectangular arrays of plasma spheres ( S = 0.3 c ω p ) with a = c ω p and b as shown in the inset.

Metrics