Abstract

To the best of our knowledge, proposed is the first distance-measurement sensor using direct spatial signal processing. The sensor is implemented using a laser beam engaged in target-dependent spatial beam processing using an electronically controlled variable focus lens (ECVFL). Specifically, the target-reflected beam is observed by an optical detector while electronically scanning the focal length of the ECVFL in the path of the laser beam. A received-beam minimum spatial size corresponds to a specific ECVFL focal length that in turn is used to compute the sensed target distance. Experiments have been conducted using a 633nm He–Ne laser and a liquid ECVFL, giving target distance measurements from 6to109cm with a <1.7% sensor resolution. Various noncontact applications for the sensor include sensing of object measurement parameters of distance, motion displacement, three-dimensional structure, spatial profile, and levels.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Figveroa and E. Barbivi, IEEE Trans. Instrum. Meas. 40, 764 (1991).
    [CrossRef]
  2. N. Pohl, M. Gerding, B. Will, T. Musch, J. Hausner, and B. Schiek, IEEE Trans. Microwave Theory Tech. 55, 1374 (2007).
    [CrossRef]
  3. T.Bosch and M.Lescure, eds., Selected Papers on Laser Distance Measurements (SPIE, 1995), Vol. 115.
  4. M. C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, Opt. Eng. 40, 10 (2001).
    [CrossRef]
  5. P. de Groot, Opt. Eng. 40, 28 (2001).
    [CrossRef]
  6. Y. Salvadé, N. Schuhler, S. Lévêque, and S. Le Floch, Appl. Opt. 47, 2715 (2008).
    [CrossRef] [PubMed]
  7. M. Takeda and H. Yamamoto, Appl. Opt. 33, 7829 (1994).
    [CrossRef] [PubMed]
  8. C. Liu, W. Jywe, and C. Chen, Appl. Opt. 43, 5607 (2004).
    [CrossRef] [PubMed]
  9. N. A. Riza, “Hybrid design high dynamic range high resolution optical distance sensor,” U.S. patent pending.

2008 (1)

2007 (1)

N. Pohl, M. Gerding, B. Will, T. Musch, J. Hausner, and B. Schiek, IEEE Trans. Microwave Theory Tech. 55, 1374 (2007).
[CrossRef]

2004 (1)

2001 (2)

M. C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, Opt. Eng. 40, 10 (2001).
[CrossRef]

P. de Groot, Opt. Eng. 40, 28 (2001).
[CrossRef]

1994 (1)

1991 (1)

F. Figveroa and E. Barbivi, IEEE Trans. Instrum. Meas. 40, 764 (1991).
[CrossRef]

Amann, M. C.

M. C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, Opt. Eng. 40, 10 (2001).
[CrossRef]

Barbivi, E.

F. Figveroa and E. Barbivi, IEEE Trans. Instrum. Meas. 40, 764 (1991).
[CrossRef]

Bosch, T.

M. C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, Opt. Eng. 40, 10 (2001).
[CrossRef]

Chen, C.

de Groot, P.

P. de Groot, Opt. Eng. 40, 28 (2001).
[CrossRef]

Figveroa, F.

F. Figveroa and E. Barbivi, IEEE Trans. Instrum. Meas. 40, 764 (1991).
[CrossRef]

Gerding, M.

N. Pohl, M. Gerding, B. Will, T. Musch, J. Hausner, and B. Schiek, IEEE Trans. Microwave Theory Tech. 55, 1374 (2007).
[CrossRef]

Hausner, J.

N. Pohl, M. Gerding, B. Will, T. Musch, J. Hausner, and B. Schiek, IEEE Trans. Microwave Theory Tech. 55, 1374 (2007).
[CrossRef]

Jywe, W.

Le Floch, S.

Lescure, M.

M. C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, Opt. Eng. 40, 10 (2001).
[CrossRef]

Lévêque, S.

Liu, C.

Musch, T.

N. Pohl, M. Gerding, B. Will, T. Musch, J. Hausner, and B. Schiek, IEEE Trans. Microwave Theory Tech. 55, 1374 (2007).
[CrossRef]

Myllylä, R.

M. C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, Opt. Eng. 40, 10 (2001).
[CrossRef]

Pohl, N.

N. Pohl, M. Gerding, B. Will, T. Musch, J. Hausner, and B. Schiek, IEEE Trans. Microwave Theory Tech. 55, 1374 (2007).
[CrossRef]

Rioux, M.

M. C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, Opt. Eng. 40, 10 (2001).
[CrossRef]

Riza, N. A.

N. A. Riza, “Hybrid design high dynamic range high resolution optical distance sensor,” U.S. patent pending.

Salvadé, Y.

Schiek, B.

N. Pohl, M. Gerding, B. Will, T. Musch, J. Hausner, and B. Schiek, IEEE Trans. Microwave Theory Tech. 55, 1374 (2007).
[CrossRef]

Schuhler, N.

Takeda, M.

Will, B.

N. Pohl, M. Gerding, B. Will, T. Musch, J. Hausner, and B. Schiek, IEEE Trans. Microwave Theory Tech. 55, 1374 (2007).
[CrossRef]

Yamamoto, H.

Appl. Opt. (3)

IEEE Trans. Instrum. Meas. (1)

F. Figveroa and E. Barbivi, IEEE Trans. Instrum. Meas. 40, 764 (1991).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

N. Pohl, M. Gerding, B. Will, T. Musch, J. Hausner, and B. Schiek, IEEE Trans. Microwave Theory Tech. 55, 1374 (2007).
[CrossRef]

Opt. Eng. (2)

M. C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, Opt. Eng. 40, 10 (2001).
[CrossRef]

P. de Groot, Opt. Eng. 40, 28 (2001).
[CrossRef]

Other (2)

T.Bosch and M.Lescure, eds., Selected Papers on Laser Distance Measurements (SPIE, 1995), Vol. 115.

N. A. Riza, “Hybrid design high dynamic range high resolution optical distance sensor,” U.S. patent pending.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Proposed distance sensor using spatial signal processing.

Fig. 2
Fig. 2

Sensor theoretical and experimental plots for the target distance versus the required ECVFL control voltage for the formation of a target minimum beam spot.

Fig. 3
Fig. 3

Minimum beam spot (and measured size) viewed on the CCD during sensor measurement operations for a target distance of 30 cm with ECVFL control voltages of (a) 40, (b) 42, (c) 46, (d) 50, and (e) 52 V .

Fig. 4
Fig. 4

Plots of designed distance-sensor-target measurement resolution versus target distance. The solid curve is based on ECVFL voltage step criteria, while the dashed curve is based on the fundamental Rayleigh depth of focus parameter.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

D T = D S F ( D S F ) ,
Δ D T = ( d D T d F ) Δ F ,
d D T d F = ( D S F ) D S + D S F ( D S F ) 2 .
1 L 4 = 1 F V + 1 F S .

Metrics