Abstract

We demonstrate the generation of femtosecond pulses in a synchronously pumped optical parametric oscillator (SPOPO) at the harmonics of pump repetition rate using a SPOPO cavity longer than the fundamental synchronous length. The SPOPO is based on a 1mm crystal of periodically poled LiNbO3 and pumped by a Kerr-lens mode-locked Ti:sapphire laser at 76MHz. By increasing the SPOPO synchronous cavity length we have generated output signal pulses at successive harmonics of the pump repetition rate up to the 13th harmonic at 988MHz, where average signal powers of 30mW are still available for 1.45W of pump power. The generated signal pulses at 988MHz are near transform limited with average durations of 227fs and a time-bandwidth product of 0.41 for 185fs input pump pulses.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. E. Powers, R. J. Ellingson, W. S. Pelouch, and C. L. Tang, J. Opt. Soc. Am. B 10, 2162 (1993).
    [CrossRef]
  2. A. Esteban-Martin, O. Kokabee, and M. Ebrahim-Zadeh, Opt. Lett. 33, 2650 (2008).
    [CrossRef] [PubMed]
  3. A. Bartels, T. Dekorsy, and H. Kurz, Opt. Lett. 24, 996 (1999).
    [CrossRef]
  4. S. Lecomte, L. Krainer, R. Paschotta, M. J. P. Dymott, K. J. Weingarten, and U. Keller, Opt. Lett. 27, 1714 (2002).
    [CrossRef]
  5. X. P. Zhang, J. Hebling, A. Bartels, D. Nau, J. Kuhl, W. W. Ruehle, and H. Giessen, Appl. Phys. Lett. 80, 1873 (2002).
    [CrossRef]
  6. D. T. Reid, C. McGowan, W. Sleat, M. Ebrahimzadeh, and W. Sibbett, Opt. Lett. 22, 525 (1997).
    [CrossRef] [PubMed]
  7. P. J. Phillips, S. Das, and M. Ebrahimzadeh, Appl. Phys. Lett. 77, 469 (2000).
    [CrossRef]
  8. J. Jiang and T. Hasama, Appl. Phys. B 74, 313 (2002).
    [CrossRef]
  9. J. Jiang and T. Hasama, Opt. Commun. 220, 193 (2003).
    [CrossRef]

2008 (1)

2003 (1)

J. Jiang and T. Hasama, Opt. Commun. 220, 193 (2003).
[CrossRef]

2002 (3)

J. Jiang and T. Hasama, Appl. Phys. B 74, 313 (2002).
[CrossRef]

S. Lecomte, L. Krainer, R. Paschotta, M. J. P. Dymott, K. J. Weingarten, and U. Keller, Opt. Lett. 27, 1714 (2002).
[CrossRef]

X. P. Zhang, J. Hebling, A. Bartels, D. Nau, J. Kuhl, W. W. Ruehle, and H. Giessen, Appl. Phys. Lett. 80, 1873 (2002).
[CrossRef]

2000 (1)

P. J. Phillips, S. Das, and M. Ebrahimzadeh, Appl. Phys. Lett. 77, 469 (2000).
[CrossRef]

1999 (1)

1997 (1)

1993 (1)

Bartels, A.

X. P. Zhang, J. Hebling, A. Bartels, D. Nau, J. Kuhl, W. W. Ruehle, and H. Giessen, Appl. Phys. Lett. 80, 1873 (2002).
[CrossRef]

A. Bartels, T. Dekorsy, and H. Kurz, Opt. Lett. 24, 996 (1999).
[CrossRef]

Das, S.

P. J. Phillips, S. Das, and M. Ebrahimzadeh, Appl. Phys. Lett. 77, 469 (2000).
[CrossRef]

Dekorsy, T.

Dymott, M. J. P.

Ebrahimzadeh, M.

Ebrahim-Zadeh, M.

Ellingson, R. J.

Esteban-Martin, A.

Giessen, H.

X. P. Zhang, J. Hebling, A. Bartels, D. Nau, J. Kuhl, W. W. Ruehle, and H. Giessen, Appl. Phys. Lett. 80, 1873 (2002).
[CrossRef]

Hasama, T.

J. Jiang and T. Hasama, Opt. Commun. 220, 193 (2003).
[CrossRef]

J. Jiang and T. Hasama, Appl. Phys. B 74, 313 (2002).
[CrossRef]

Hebling, J.

X. P. Zhang, J. Hebling, A. Bartels, D. Nau, J. Kuhl, W. W. Ruehle, and H. Giessen, Appl. Phys. Lett. 80, 1873 (2002).
[CrossRef]

Jiang, J.

J. Jiang and T. Hasama, Opt. Commun. 220, 193 (2003).
[CrossRef]

J. Jiang and T. Hasama, Appl. Phys. B 74, 313 (2002).
[CrossRef]

Keller, U.

Kokabee, O.

Krainer, L.

Kuhl, J.

X. P. Zhang, J. Hebling, A. Bartels, D. Nau, J. Kuhl, W. W. Ruehle, and H. Giessen, Appl. Phys. Lett. 80, 1873 (2002).
[CrossRef]

Kurz, H.

Lecomte, S.

McGowan, C.

Nau, D.

X. P. Zhang, J. Hebling, A. Bartels, D. Nau, J. Kuhl, W. W. Ruehle, and H. Giessen, Appl. Phys. Lett. 80, 1873 (2002).
[CrossRef]

Paschotta, R.

Pelouch, W. S.

Phillips, P. J.

P. J. Phillips, S. Das, and M. Ebrahimzadeh, Appl. Phys. Lett. 77, 469 (2000).
[CrossRef]

Powers, P. E.

Reid, D. T.

Ruehle, W. W.

X. P. Zhang, J. Hebling, A. Bartels, D. Nau, J. Kuhl, W. W. Ruehle, and H. Giessen, Appl. Phys. Lett. 80, 1873 (2002).
[CrossRef]

Sibbett, W.

Sleat, W.

Tang, C. L.

Weingarten, K. J.

Zhang, X. P.

X. P. Zhang, J. Hebling, A. Bartels, D. Nau, J. Kuhl, W. W. Ruehle, and H. Giessen, Appl. Phys. Lett. 80, 1873 (2002).
[CrossRef]

Appl. Phys. B (1)

J. Jiang and T. Hasama, Appl. Phys. B 74, 313 (2002).
[CrossRef]

Appl. Phys. Lett. (2)

X. P. Zhang, J. Hebling, A. Bartels, D. Nau, J. Kuhl, W. W. Ruehle, and H. Giessen, Appl. Phys. Lett. 80, 1873 (2002).
[CrossRef]

P. J. Phillips, S. Das, and M. Ebrahimzadeh, Appl. Phys. Lett. 77, 469 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

J. Jiang and T. Hasama, Opt. Commun. 220, 193 (2003).
[CrossRef]

Opt. Lett. (4)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the concept for (a) Q = 2 and n = 3 and (b) Q = 2 and n = 5 . In (a) and (b) the first row of pulses is the output pump pulse train, and the second row is the SPOPO signal output pulse train (S). T p is the round-trip time inside the pump laser cavity and T opo is the round-trip time inside the SPOPO cavity.

Fig. 2
Fig. 2

Experimental setup of the femtosecond SPOPO generating optical pulses at high harmonics of the pump repetition rate. ISO, optical isolator; HWP, half-wave-plate; L, focusing lens.

Fig. 3
Fig. 3

SPOPO output power and pump power threshold versus harmonic number.

Fig. 4
Fig. 4

(a) Input pulse train of Ti:sapphire pump laser at 76 MHz and (b) output signal pulse train of the femtosecond SPOPO at the 13th harmonic repetition rate ( 988 MHz ) pumped by this laser. The irregularity in the intensity of successive pulses in each train is owing to detection electronics.

Fig. 5
Fig. 5

Intensity autocorrelation and corresponding optical spectrum of SPOPO signal pulses at the 13th harmonic repetition rate ( 988 MHz ) .

Metrics