Abstract

Linear chains of metal nanoparticles coupled with dielectric surfaces support a variety of optical phenomena including traveling and leaky waves of several types. We investigate the chain-surface interactions and show that traveling waves can remain bound to the chain, radiate into surface wave beams, or radiate into space and surface wave beams. Radiation into surface waves may be exploited to create a leaky surface wave antenna with potential applications to surface wave microscopy.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. P. Radko, S. I. Bozhevolnyi, A. B. Evlyukhin, and A. Boltasseva, Opt. Express 15, 6576 (2007).
    [CrossRef] [PubMed]
  2. L. Feng, K. A. Tetz, B. Slutsky, V. Lomakin, and Y. Fainman, Appl. Phys. Lett. 91, 081101 (2007).
    [CrossRef]
  3. Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, S. Sun, and X. Zhang, Nano Lett. 5, 1726 (2005).
    [CrossRef] [PubMed]
  4. M. Quinten, A. Leitner, R. Krenn, and F. R. Aussenegg, Opt. Lett. 23, 1331 (1998).
    [CrossRef]
  5. W. H. Weber and G. W. Ford, Phys. Rev. B 70, 125429 (2004).
    [CrossRef]
  6. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, Phys. Rev. B 62, 016356 (2000).
    [CrossRef]
  7. A. Alù and N. Engheta, Phys. Rev. B 74, 205436 (2006).
    [CrossRef]
  8. V. A. Markel and A. K. Sarychev, Phys. Rev. B 75, 085426 (2007).
    [CrossRef]
  9. R. A. Shore and A. D. Yaghjian, Electron. Lett. 41, 578 (2005).
    [CrossRef]
  10. V. Lomakin, L. Meng, and E. Michielssen, Opt. Express 15, 11827 (2007).
    [CrossRef] [PubMed]
  11. R. E. Collin and F. J. Zucker, Antenna Theory: Part 2 (McGraw-Hill, 1969).
  12. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  13. W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE, 1995).
  14. V. Lomakin, C. Nan-Wei, L. Shuqing, and E. Michielssen, IEEE Microw. Wirel. Compon. Lett. 14, 355 (2004).
    [CrossRef]

2007

I. P. Radko, S. I. Bozhevolnyi, A. B. Evlyukhin, and A. Boltasseva, Opt. Express 15, 6576 (2007).
[CrossRef] [PubMed]

L. Feng, K. A. Tetz, B. Slutsky, V. Lomakin, and Y. Fainman, Appl. Phys. Lett. 91, 081101 (2007).
[CrossRef]

V. A. Markel and A. K. Sarychev, Phys. Rev. B 75, 085426 (2007).
[CrossRef]

V. Lomakin, L. Meng, and E. Michielssen, Opt. Express 15, 11827 (2007).
[CrossRef] [PubMed]

2006

A. Alù and N. Engheta, Phys. Rev. B 74, 205436 (2006).
[CrossRef]

2005

R. A. Shore and A. D. Yaghjian, Electron. Lett. 41, 578 (2005).
[CrossRef]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, S. Sun, and X. Zhang, Nano Lett. 5, 1726 (2005).
[CrossRef] [PubMed]

2004

W. H. Weber and G. W. Ford, Phys. Rev. B 70, 125429 (2004).
[CrossRef]

V. Lomakin, C. Nan-Wei, L. Shuqing, and E. Michielssen, IEEE Microw. Wirel. Compon. Lett. 14, 355 (2004).
[CrossRef]

2000

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, Phys. Rev. B 62, 016356 (2000).
[CrossRef]

1998

Alù, A.

A. Alù and N. Engheta, Phys. Rev. B 74, 205436 (2006).
[CrossRef]

Atwater, H. A.

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, Phys. Rev. B 62, 016356 (2000).
[CrossRef]

Aussenegg, F. R.

Boltasseva, A.

Bozhevolnyi, S. I.

Brongersma, M. L.

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, Phys. Rev. B 62, 016356 (2000).
[CrossRef]

Chew, W. C.

W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE, 1995).

Collin, R. E.

R. E. Collin and F. J. Zucker, Antenna Theory: Part 2 (McGraw-Hill, 1969).

Engheta, N.

A. Alù and N. Engheta, Phys. Rev. B 74, 205436 (2006).
[CrossRef]

Evlyukhin, A. B.

Fainman, Y.

L. Feng, K. A. Tetz, B. Slutsky, V. Lomakin, and Y. Fainman, Appl. Phys. Lett. 91, 081101 (2007).
[CrossRef]

Feng, L.

L. Feng, K. A. Tetz, B. Slutsky, V. Lomakin, and Y. Fainman, Appl. Phys. Lett. 91, 081101 (2007).
[CrossRef]

Ford, G. W.

W. H. Weber and G. W. Ford, Phys. Rev. B 70, 125429 (2004).
[CrossRef]

Hartman, J. W.

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, Phys. Rev. B 62, 016356 (2000).
[CrossRef]

Krenn, R.

Leitner, A.

Liu, Z.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, S. Sun, and X. Zhang, Nano Lett. 5, 1726 (2005).
[CrossRef] [PubMed]

Lomakin, V.

L. Feng, K. A. Tetz, B. Slutsky, V. Lomakin, and Y. Fainman, Appl. Phys. Lett. 91, 081101 (2007).
[CrossRef]

V. Lomakin, L. Meng, and E. Michielssen, Opt. Express 15, 11827 (2007).
[CrossRef] [PubMed]

V. Lomakin, C. Nan-Wei, L. Shuqing, and E. Michielssen, IEEE Microw. Wirel. Compon. Lett. 14, 355 (2004).
[CrossRef]

Markel, V. A.

V. A. Markel and A. K. Sarychev, Phys. Rev. B 75, 085426 (2007).
[CrossRef]

Meng, L.

Michielssen, E.

V. Lomakin, L. Meng, and E. Michielssen, Opt. Express 15, 11827 (2007).
[CrossRef] [PubMed]

V. Lomakin, C. Nan-Wei, L. Shuqing, and E. Michielssen, IEEE Microw. Wirel. Compon. Lett. 14, 355 (2004).
[CrossRef]

Nan-Wei, C.

V. Lomakin, C. Nan-Wei, L. Shuqing, and E. Michielssen, IEEE Microw. Wirel. Compon. Lett. 14, 355 (2004).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

Pikus, Y.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, S. Sun, and X. Zhang, Nano Lett. 5, 1726 (2005).
[CrossRef] [PubMed]

Quinten, M.

Radko, I. P.

Sarychev, A. K.

V. A. Markel and A. K. Sarychev, Phys. Rev. B 75, 085426 (2007).
[CrossRef]

Shore, R. A.

R. A. Shore and A. D. Yaghjian, Electron. Lett. 41, 578 (2005).
[CrossRef]

Shuqing, L.

V. Lomakin, C. Nan-Wei, L. Shuqing, and E. Michielssen, IEEE Microw. Wirel. Compon. Lett. 14, 355 (2004).
[CrossRef]

Slutsky, B.

L. Feng, K. A. Tetz, B. Slutsky, V. Lomakin, and Y. Fainman, Appl. Phys. Lett. 91, 081101 (2007).
[CrossRef]

Srituravanich, W.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, S. Sun, and X. Zhang, Nano Lett. 5, 1726 (2005).
[CrossRef] [PubMed]

Steele, J. M.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, S. Sun, and X. Zhang, Nano Lett. 5, 1726 (2005).
[CrossRef] [PubMed]

Sun, S.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, S. Sun, and X. Zhang, Nano Lett. 5, 1726 (2005).
[CrossRef] [PubMed]

Tetz, K. A.

L. Feng, K. A. Tetz, B. Slutsky, V. Lomakin, and Y. Fainman, Appl. Phys. Lett. 91, 081101 (2007).
[CrossRef]

Weber, W. H.

W. H. Weber and G. W. Ford, Phys. Rev. B 70, 125429 (2004).
[CrossRef]

Yaghjian, A. D.

R. A. Shore and A. D. Yaghjian, Electron. Lett. 41, 578 (2005).
[CrossRef]

Zhang, X.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, S. Sun, and X. Zhang, Nano Lett. 5, 1726 (2005).
[CrossRef] [PubMed]

Zucker, F. J.

R. E. Collin and F. J. Zucker, Antenna Theory: Part 2 (McGraw-Hill, 1969).

Appl. Phys. Lett.

L. Feng, K. A. Tetz, B. Slutsky, V. Lomakin, and Y. Fainman, Appl. Phys. Lett. 91, 081101 (2007).
[CrossRef]

Electron. Lett.

R. A. Shore and A. D. Yaghjian, Electron. Lett. 41, 578 (2005).
[CrossRef]

IEEE Microw. Wirel. Compon. Lett.

V. Lomakin, C. Nan-Wei, L. Shuqing, and E. Michielssen, IEEE Microw. Wirel. Compon. Lett. 14, 355 (2004).
[CrossRef]

Nano Lett.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, S. Sun, and X. Zhang, Nano Lett. 5, 1726 (2005).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. B

W. H. Weber and G. W. Ford, Phys. Rev. B 70, 125429 (2004).
[CrossRef]

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, Phys. Rev. B 62, 016356 (2000).
[CrossRef]

A. Alù and N. Engheta, Phys. Rev. B 74, 205436 (2006).
[CrossRef]

V. A. Markel and A. K. Sarychev, Phys. Rev. B 75, 085426 (2007).
[CrossRef]

Other

R. E. Collin and F. J. Zucker, Antenna Theory: Part 2 (McGraw-Hill, 1969).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

TWs on an array of nanoshells above a surface can radiate into SWs and space waves.

Fig. 2
Fig. 2

(a) Dispersion of traveling wavenumbers k TW for a chain near a surface. The TE and TM curves on the left correspond to modes that radiate into TE and TM SWs, respectively, whereas the TE and TM curves on the right represent slow wave modes mediated by SW interaction and bound to the chain. The horizontal line indicates an excitation wavelength of 630 nm , and the circle marks its intersection with the TM curve, where the fields are plotted next. (b) Normalized TM SW electric field radiated by the chain along the surface, observed at a vertical displacement z = h from the surface at a distance r = k 0 ( N d ) 2 and angle θ from the chain.

Fig. 3
Fig. 3

(a) Dispersion of traveling wavenumbers k TW for a TM polarized two-periodic chain near a surface. The two rightmost dashed curves shown are modes that appear for the singly periodic chain, whereas the two curves on the left are higher-order modes that radiate into both SWs and free space. The horizontal line indicates an excitation wavelength of 630 nm at which the fields are plotted next. (b) Normalized fields radiated from the k TW , 1 + mode, a higher-order mode with negative wavenumber, observed along and above the surface, at an angle θ with the chain, and at a distance r = k 0 ( N d ) 2 .

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

θ SW = cos 1 { k TW k SW } , θ SW > cos 1 { k 0 k SW } ,
k TW , n ± = ± ( k TW + 2 π n L x ) ,
θ 0 = cos 1 { k TW , n ± k 0 } , θ SW = cos 1 { k TW , n ± k SW } ,

Metrics