Abstract

Partially coherent beams can be used to reduce the turbulence-induced scintillations; however, the partial coherence induces the decrease of the mean received irradiance. An optimization criterion for the initial coherence degree of lasers is proposed. This criterion maximizes the received irradiance that occurs with the highest probability. A method for adaptive initial coherence was given to use the criterion in practical applications.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. J. Schulz, Opt. Lett. 30, 1093 (2005).
    [CrossRef] [PubMed]
  2. O. Korotkova, L. Andrews, and R. Phillips, Opt. Eng. (Bellingham) 43, 330 (2004).
    [CrossRef]
  3. J. Ricklin and F. Davidson, J. Opt. Soc. Am. A 19, 1794 (2002).
    [CrossRef]
  4. O. Korotkova, L. Andrews, and R. Phillips, Proc. SPIE 4821, 98 (2002).
    [CrossRef]
  5. T. Weyrauch and M. Vorontsov, J. Opt. Fiber. Commun. Rep. 1, 355 (2004).
    [CrossRef]

2005

2004

O. Korotkova, L. Andrews, and R. Phillips, Opt. Eng. (Bellingham) 43, 330 (2004).
[CrossRef]

T. Weyrauch and M. Vorontsov, J. Opt. Fiber. Commun. Rep. 1, 355 (2004).
[CrossRef]

2002

J. Ricklin and F. Davidson, J. Opt. Soc. Am. A 19, 1794 (2002).
[CrossRef]

O. Korotkova, L. Andrews, and R. Phillips, Proc. SPIE 4821, 98 (2002).
[CrossRef]

Andrews, L.

O. Korotkova, L. Andrews, and R. Phillips, Opt. Eng. (Bellingham) 43, 330 (2004).
[CrossRef]

O. Korotkova, L. Andrews, and R. Phillips, Proc. SPIE 4821, 98 (2002).
[CrossRef]

Davidson, F.

Korotkova, O.

O. Korotkova, L. Andrews, and R. Phillips, Opt. Eng. (Bellingham) 43, 330 (2004).
[CrossRef]

O. Korotkova, L. Andrews, and R. Phillips, Proc. SPIE 4821, 98 (2002).
[CrossRef]

Phillips, R.

O. Korotkova, L. Andrews, and R. Phillips, Opt. Eng. (Bellingham) 43, 330 (2004).
[CrossRef]

O. Korotkova, L. Andrews, and R. Phillips, Proc. SPIE 4821, 98 (2002).
[CrossRef]

Ricklin, J.

Schulz, T. J.

Vorontsov, M.

T. Weyrauch and M. Vorontsov, J. Opt. Fiber. Commun. Rep. 1, 355 (2004).
[CrossRef]

Weyrauch, T.

T. Weyrauch and M. Vorontsov, J. Opt. Fiber. Commun. Rep. 1, 355 (2004).
[CrossRef]

J. Opt. Fiber. Commun. Rep.

T. Weyrauch and M. Vorontsov, J. Opt. Fiber. Commun. Rep. 1, 355 (2004).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Eng. (Bellingham)

O. Korotkova, L. Andrews, and R. Phillips, Opt. Eng. (Bellingham) 43, 330 (2004).
[CrossRef]

Opt. Lett.

Proc. SPIE

O. Korotkova, L. Andrews, and R. Phillips, Proc. SPIE 4821, 98 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Flux variance of the irradiance fluctuations as a function of the Rytov variance.

Fig. 2
Fig. 2

PDF curves of the irradiance fluctuations.

Fig. 3
Fig. 3

Dependence relation between I T ( r = 0 ) and the correlation radius l c .

Fig. 4
Fig. 4

Optimal correlation radius against the Rytov variance for different propagation distances.

Fig. 5
Fig. 5

Schematic setup of adaptive initial coherence in a FSOC link.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

p I ( I ) = 2 ( α β ) ( α + β ) 2 Γ ( α ) Γ ( β ) I ( α + β ) 2 1 K α β ( 2 α β I ) , I > 0 ,
σ ln x 2 = 0.49 σ l 2 ( Ω G Λ e Ω G + Λ e ) 2 R [ η x 1 + 0.4 η x ( 1 + ϴ e ) ( Ω G + Λ e ) ] 7 6 ,
σ ln y 2 = 1.27 σ l 2 η y 5 6 1 + 0.4 η y ( Ω G + Λ 1 ) ,
d p I ( I ) d I = 0 ,
d I r ̱ max d l c l c = l opt = 0 .

Metrics