Abstract

The fluorescence decay of high-affinity nonratiometric Ca2+ indicator Oregon Green BAPTA-1 (OGB-1) is analyzed with unprecedented temporal resolution in the two-photon excitation regime. A triple exponential decay is shown to best fit the fluorescence dynamics of OGB-1. We provide a model for accurate measurements of the free Ca2+ concentration and dissociation constants of nonratiometric calcium indicators.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum, 1999).
  2. K. Suhling, P. M. W. French, and D. Phillips, Photochem. Photobiol. Sci. 4, 13 (2005).
    [CrossRef]
  3. A. V. Agronskaia, L. Tertoolen, and H. C. Gerritsen, J. Biomed. Opt. 9, 1230 (2004).
    [CrossRef] [PubMed]
  4. C. D. Wilms, H. Schnidt, and J. Eilers, Cell Calcium 40, 73 (2006).
    [CrossRef] [PubMed]
  5. C. Niclass, A. Rochas, P. A. Besse, and E. Charbon, IEEE J. Solid-State Circuits 40, 1847 (2005).
    [CrossRef]
  6. W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
    [CrossRef] [PubMed]
  7. A. Habenicht, J. Hjelm, E. Mukhtar, F. Bergstrom, and L. B. A. Johansson, Chem. Phys. Lett. 354, 367 (2002).
    [CrossRef]
  8. R. Y. Tsien, Biochemistry 19, 2396 (1980).
    [CrossRef] [PubMed]
  9. D. Thomas, S. C. Tovey, T. J. Collins, M. D. Bootman, M. J. Berridge, and P. Lipp, Cell Calcium 28, 213 (2000).
    [CrossRef] [PubMed]
  10. J. R. Lakowicz, H. Szmacinski, and M. L. Johnson, J. Fluoresc. 2, 47 (1992).
    [CrossRef]
  11. M. Eberhard and P. Erne, Biochem. Biophys. Res. Commun. 180, 209 (1991).
    [CrossRef] [PubMed]
  12. G. Grynkiewicz, M. Poenie, and R. Y. Tsien, J. Biol. Chem. 260, 3440 (1985).
    [PubMed]

2006 (1)

C. D. Wilms, H. Schnidt, and J. Eilers, Cell Calcium 40, 73 (2006).
[CrossRef] [PubMed]

2005 (2)

C. Niclass, A. Rochas, P. A. Besse, and E. Charbon, IEEE J. Solid-State Circuits 40, 1847 (2005).
[CrossRef]

K. Suhling, P. M. W. French, and D. Phillips, Photochem. Photobiol. Sci. 4, 13 (2005).
[CrossRef]

2004 (1)

A. V. Agronskaia, L. Tertoolen, and H. C. Gerritsen, J. Biomed. Opt. 9, 1230 (2004).
[CrossRef] [PubMed]

2002 (1)

A. Habenicht, J. Hjelm, E. Mukhtar, F. Bergstrom, and L. B. A. Johansson, Chem. Phys. Lett. 354, 367 (2002).
[CrossRef]

2000 (1)

D. Thomas, S. C. Tovey, T. J. Collins, M. D. Bootman, M. J. Berridge, and P. Lipp, Cell Calcium 28, 213 (2000).
[CrossRef] [PubMed]

1999 (1)

J. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum, 1999).

1992 (1)

J. R. Lakowicz, H. Szmacinski, and M. L. Johnson, J. Fluoresc. 2, 47 (1992).
[CrossRef]

1991 (1)

M. Eberhard and P. Erne, Biochem. Biophys. Res. Commun. 180, 209 (1991).
[CrossRef] [PubMed]

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

1985 (1)

G. Grynkiewicz, M. Poenie, and R. Y. Tsien, J. Biol. Chem. 260, 3440 (1985).
[PubMed]

1980 (1)

R. Y. Tsien, Biochemistry 19, 2396 (1980).
[CrossRef] [PubMed]

Agronskaia, A. V.

A. V. Agronskaia, L. Tertoolen, and H. C. Gerritsen, J. Biomed. Opt. 9, 1230 (2004).
[CrossRef] [PubMed]

Bergstrom, F.

A. Habenicht, J. Hjelm, E. Mukhtar, F. Bergstrom, and L. B. A. Johansson, Chem. Phys. Lett. 354, 367 (2002).
[CrossRef]

Berridge, M. J.

D. Thomas, S. C. Tovey, T. J. Collins, M. D. Bootman, M. J. Berridge, and P. Lipp, Cell Calcium 28, 213 (2000).
[CrossRef] [PubMed]

Besse, P. A.

C. Niclass, A. Rochas, P. A. Besse, and E. Charbon, IEEE J. Solid-State Circuits 40, 1847 (2005).
[CrossRef]

Bootman, M. D.

D. Thomas, S. C. Tovey, T. J. Collins, M. D. Bootman, M. J. Berridge, and P. Lipp, Cell Calcium 28, 213 (2000).
[CrossRef] [PubMed]

Charbon, E.

C. Niclass, A. Rochas, P. A. Besse, and E. Charbon, IEEE J. Solid-State Circuits 40, 1847 (2005).
[CrossRef]

Collins, T. J.

D. Thomas, S. C. Tovey, T. J. Collins, M. D. Bootman, M. J. Berridge, and P. Lipp, Cell Calcium 28, 213 (2000).
[CrossRef] [PubMed]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Eberhard, M.

M. Eberhard and P. Erne, Biochem. Biophys. Res. Commun. 180, 209 (1991).
[CrossRef] [PubMed]

Eilers, J.

C. D. Wilms, H. Schnidt, and J. Eilers, Cell Calcium 40, 73 (2006).
[CrossRef] [PubMed]

Erne, P.

M. Eberhard and P. Erne, Biochem. Biophys. Res. Commun. 180, 209 (1991).
[CrossRef] [PubMed]

French, P. M. W.

K. Suhling, P. M. W. French, and D. Phillips, Photochem. Photobiol. Sci. 4, 13 (2005).
[CrossRef]

Gerritsen, H. C.

A. V. Agronskaia, L. Tertoolen, and H. C. Gerritsen, J. Biomed. Opt. 9, 1230 (2004).
[CrossRef] [PubMed]

Grynkiewicz, G.

G. Grynkiewicz, M. Poenie, and R. Y. Tsien, J. Biol. Chem. 260, 3440 (1985).
[PubMed]

Habenicht, A.

A. Habenicht, J. Hjelm, E. Mukhtar, F. Bergstrom, and L. B. A. Johansson, Chem. Phys. Lett. 354, 367 (2002).
[CrossRef]

Hjelm, J.

A. Habenicht, J. Hjelm, E. Mukhtar, F. Bergstrom, and L. B. A. Johansson, Chem. Phys. Lett. 354, 367 (2002).
[CrossRef]

Johansson, L. B. A.

A. Habenicht, J. Hjelm, E. Mukhtar, F. Bergstrom, and L. B. A. Johansson, Chem. Phys. Lett. 354, 367 (2002).
[CrossRef]

Johnson, M. L.

J. R. Lakowicz, H. Szmacinski, and M. L. Johnson, J. Fluoresc. 2, 47 (1992).
[CrossRef]

Lakowicz, J.

J. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum, 1999).

Lakowicz, J. R.

J. R. Lakowicz, H. Szmacinski, and M. L. Johnson, J. Fluoresc. 2, 47 (1992).
[CrossRef]

Lipp, P.

D. Thomas, S. C. Tovey, T. J. Collins, M. D. Bootman, M. J. Berridge, and P. Lipp, Cell Calcium 28, 213 (2000).
[CrossRef] [PubMed]

Mukhtar, E.

A. Habenicht, J. Hjelm, E. Mukhtar, F. Bergstrom, and L. B. A. Johansson, Chem. Phys. Lett. 354, 367 (2002).
[CrossRef]

Niclass, C.

C. Niclass, A. Rochas, P. A. Besse, and E. Charbon, IEEE J. Solid-State Circuits 40, 1847 (2005).
[CrossRef]

Phillips, D.

K. Suhling, P. M. W. French, and D. Phillips, Photochem. Photobiol. Sci. 4, 13 (2005).
[CrossRef]

Poenie, M.

G. Grynkiewicz, M. Poenie, and R. Y. Tsien, J. Biol. Chem. 260, 3440 (1985).
[PubMed]

Rochas, A.

C. Niclass, A. Rochas, P. A. Besse, and E. Charbon, IEEE J. Solid-State Circuits 40, 1847 (2005).
[CrossRef]

Schnidt, H.

C. D. Wilms, H. Schnidt, and J. Eilers, Cell Calcium 40, 73 (2006).
[CrossRef] [PubMed]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Suhling, K.

K. Suhling, P. M. W. French, and D. Phillips, Photochem. Photobiol. Sci. 4, 13 (2005).
[CrossRef]

Szmacinski, H.

J. R. Lakowicz, H. Szmacinski, and M. L. Johnson, J. Fluoresc. 2, 47 (1992).
[CrossRef]

Tertoolen, L.

A. V. Agronskaia, L. Tertoolen, and H. C. Gerritsen, J. Biomed. Opt. 9, 1230 (2004).
[CrossRef] [PubMed]

Thomas, D.

D. Thomas, S. C. Tovey, T. J. Collins, M. D. Bootman, M. J. Berridge, and P. Lipp, Cell Calcium 28, 213 (2000).
[CrossRef] [PubMed]

Tovey, S. C.

D. Thomas, S. C. Tovey, T. J. Collins, M. D. Bootman, M. J. Berridge, and P. Lipp, Cell Calcium 28, 213 (2000).
[CrossRef] [PubMed]

Tsien, R. Y.

G. Grynkiewicz, M. Poenie, and R. Y. Tsien, J. Biol. Chem. 260, 3440 (1985).
[PubMed]

R. Y. Tsien, Biochemistry 19, 2396 (1980).
[CrossRef] [PubMed]

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Wilms, C. D.

C. D. Wilms, H. Schnidt, and J. Eilers, Cell Calcium 40, 73 (2006).
[CrossRef] [PubMed]

Biochem. Biophys. Res. Commun. (1)

M. Eberhard and P. Erne, Biochem. Biophys. Res. Commun. 180, 209 (1991).
[CrossRef] [PubMed]

Biochemistry (1)

R. Y. Tsien, Biochemistry 19, 2396 (1980).
[CrossRef] [PubMed]

Cell Calcium (2)

D. Thomas, S. C. Tovey, T. J. Collins, M. D. Bootman, M. J. Berridge, and P. Lipp, Cell Calcium 28, 213 (2000).
[CrossRef] [PubMed]

C. D. Wilms, H. Schnidt, and J. Eilers, Cell Calcium 40, 73 (2006).
[CrossRef] [PubMed]

Chem. Phys. Lett. (1)

A. Habenicht, J. Hjelm, E. Mukhtar, F. Bergstrom, and L. B. A. Johansson, Chem. Phys. Lett. 354, 367 (2002).
[CrossRef]

IEEE J. Solid-State Circuits (1)

C. Niclass, A. Rochas, P. A. Besse, and E. Charbon, IEEE J. Solid-State Circuits 40, 1847 (2005).
[CrossRef]

J. Biol. Chem. (1)

G. Grynkiewicz, M. Poenie, and R. Y. Tsien, J. Biol. Chem. 260, 3440 (1985).
[PubMed]

J. Biomed. Opt. (1)

A. V. Agronskaia, L. Tertoolen, and H. C. Gerritsen, J. Biomed. Opt. 9, 1230 (2004).
[CrossRef] [PubMed]

J. Fluoresc. (1)

J. R. Lakowicz, H. Szmacinski, and M. L. Johnson, J. Fluoresc. 2, 47 (1992).
[CrossRef]

Photochem. Photobiol. Sci. (1)

K. Suhling, P. M. W. French, and D. Phillips, Photochem. Photobiol. Sci. 4, 13 (2005).
[CrossRef]

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Other (1)

J. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Schematic of the experimental setup for fluorescence lifetime measurements. (b) Scanning electron microscope image of a SPAD. (c) Measured fluorescence decay of OGB-1 at various calcium concentrations (gray curves) and hyper-Rayleigh scattering from colloidal gold particles (open circles). For a 38 nM free Ca 2 + concentration buffer, the numerical fits of the double-exponential (dotted curve, χ r 2 = 1.80 ) and triple-exponential (dashed curve, χ r 2 = 1.09 ) decay models are indicated. The inset shows a close-up of the initial interval of 600 ps width, and (d) shows the residues for the two models.

Fig. 2
Fig. 2

(a) Partial intensities A s , A i , and A f of the slow ( τ s = 4.18 ± 0.01 ns ) , intermediate ( τ i = 768 ± 16 ps ) , and fast ( τ f = 188 ± 6 ps ) decay components and (b) the mean lifetime τ ave = k A k τ k of OGB-1 fluorescence as a function of the free Ca 2 + concentration in comparison with the data from [3] and [4], χ r 2 = 0.96 . The numerical fit to the model [Eq. (2)] (curves) yields K D = 195 ± 9 nM , K D n = 4 ± 6 μ M , and n = 9 ± 3 . (c) Ratio A f [ Ca 2 + ] A s (points) and its variance-weighted mean, yielding K D = 180 ± 11 nM (dashed line). The inset shows the structure of OGB-1 molecule.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I k = 1 2 [ 1 + e T τ k 1 e T τ k erf ( σ IRF 2 τ k t 2 σ IRF ) ] exp ( t τ k + σ IRF 2 2 τ k 2 ) , k = { f , i , s } ,
[ Ca 2 + ] K D = A s A f = A s 1 A s [ 1 + A i A f ] , [ Ca 2 + ] K D n = ( A i A f ) n .

Metrics