Abstract

We demonstrate all fiber Fabry–Perot resonators (F–P resonators) based on Sagnac loop mirrors assembled with tellurite microfibers. As-assembled F–P resonators, with dimensions of hundreds of micrometers, show clear resonant responses with typical quality factor of about 5700, free spectral range of about 1nm, and a maximum extinction ratio of 18dB. The reflectivity of the loop mirror and the effective cavity length of the F–P resonator can be tuned by micromanipulation under an optical microscope. F–P resonators demonstrated here show advantages of small size, good resonance, easy fabrication, tunability, and easy integration with fiber systems.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Stone and D. Marcuse, J. Lightwave Technol. LT-14, 382 (1986).
    [CrossRef]
  2. P. Urquhart, Appl. Opt. 26, 456 (1987).
    [CrossRef] [PubMed]
  3. M. Brierley and P. Urquhart, Appl. Opt. 26, 4841 (1987).
    [CrossRef] [PubMed]
  4. P. Urquhart, J. Opt. Soc. Am. A 5, 803 (1988).
    [CrossRef]
  5. S. R. Mallinson, Appl. Opt. 26, 430 (1987).
    [CrossRef] [PubMed]
  6. I. D. Miller, D. B. Mortimore, P. Urquhart, B. J. Ainslie, S. P. Craig, C. A. Millar, and D. B. Payne, Appl. Opt. 26, 2197 (1987).
    [CrossRef] [PubMed]
  7. P. Urquhart, Appl. Opt. 28, 3759 (1989).
    [CrossRef] [PubMed]
  8. F. Maystre and A. Bertholds, Opt. Lett. 14, 587 (1989).
    [CrossRef] [PubMed]
  9. Y. Han, X. Dong, C. Kim, M. Y. Jeong, and J. H. Lee, Opt. Express 15, 2921 (2007).
    [CrossRef] [PubMed]
  10. N. J. Doran and D. Wood, Opt. Lett. 13, 56 (1988).
    [CrossRef] [PubMed]
  11. C. A. Millar, I. D. Miller, D. B. Mortimore, B. J. Ainslie, and P. Urquhart, IEE Proc.-J: Optoelectron. 135, 303 (1988).
    [CrossRef]
  12. G. Das and J. W. Y. Lit, IEEE Photon. Technol. Lett. 16, 60 (2004).
    [CrossRef]
  13. M. Sumetsky, Y. Dulashko, and A. Hale, Opt. Express 12, 3521 (2004).
    [CrossRef] [PubMed]
  14. L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, Nano Lett. 5, 259 (2005).
    [CrossRef] [PubMed]
  15. W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, Appl. Phys. Lett. 86, 151122 (2005).
    [CrossRef]
  16. M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, Appl. Phys. Lett. 86, 161108 (2005).
    [CrossRef]
  17. P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, Opt. Lett. 30, 1273 (2005).
    [CrossRef] [PubMed]
  18. J. Villatoro and D. Monzón-Hernández, Opt. Express 13, 5087 (2005).
    [CrossRef] [PubMed]
  19. C. J. Barrelet, J. M. Bao, M. Loncar, H.-G. Park, F. Capasso, and C. M. Lieber, Nano Lett. 6, 11 (2006).
    [CrossRef] [PubMed]
  20. X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, and L. M. Tong, Appl. Phys. Lett. 89, 143513 (2006).
    [CrossRef]
  21. F. Xu, P. Horak, and G. Brambilla, Opt. Express 15, 7888 (2007).
    [CrossRef] [PubMed]
  22. L. B. Fu, M. D. Pelusi, E. C. Magi, V. G. Ta'eed, and B. J. Eggleton, Electron. Lett. 44, 44 (2008).
    [CrossRef]
  23. Y. H. Li and L. M. Tong, Opt. Lett. 33, 303 (2008).
    [CrossRef] [PubMed]
  24. M. D. Pelusi, F. Luan, E. Magi, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, Opt. Express 16, 11506 (2008).
    [CrossRef] [PubMed]
  25. L. M. Tong, L. L. Hu, J. J. Zhang, J. R. Qiu, Q. Yang, J. Y. Lou, Y. H. Shen, J. L. He, and Z. Z. Ye, Opt. Express 14, 82 (2006).
    [CrossRef] [PubMed]
  26. A. V. Maslov and C. Z. Ning, Appl. Phys. Lett. 83, 1237 (2003).
    [CrossRef]
  27. A. B. Greytak, C. J. Barrelet, Y. Li, and C. M. Lieber, Appl. Phys. Lett. 87, 151103 (2005).
    [CrossRef]
  28. S. S. Wang, J. Fu, M. Qiu, K. J. Huang, Z. Ma, and L. M. Tong, Opt. Express 16, 8887 (2008).
    [CrossRef] [PubMed]
  29. H. Van de Stadt and J. M. Muller, J. Opt. Soc. Am. A 2, 1363 (1985).
    [CrossRef]

2008 (4)

2007 (2)

2006 (3)

L. M. Tong, L. L. Hu, J. J. Zhang, J. R. Qiu, Q. Yang, J. Y. Lou, Y. H. Shen, J. L. He, and Z. Z. Ye, Opt. Express 14, 82 (2006).
[CrossRef] [PubMed]

C. J. Barrelet, J. M. Bao, M. Loncar, H.-G. Park, F. Capasso, and C. M. Lieber, Nano Lett. 6, 11 (2006).
[CrossRef] [PubMed]

X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, and L. M. Tong, Appl. Phys. Lett. 89, 143513 (2006).
[CrossRef]

2005 (6)

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, Nano Lett. 5, 259 (2005).
[CrossRef] [PubMed]

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, Appl. Phys. Lett. 86, 161108 (2005).
[CrossRef]

A. B. Greytak, C. J. Barrelet, Y. Li, and C. M. Lieber, Appl. Phys. Lett. 87, 151103 (2005).
[CrossRef]

P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, Opt. Lett. 30, 1273 (2005).
[CrossRef] [PubMed]

J. Villatoro and D. Monzón-Hernández, Opt. Express 13, 5087 (2005).
[CrossRef] [PubMed]

2004 (2)

G. Das and J. W. Y. Lit, IEEE Photon. Technol. Lett. 16, 60 (2004).
[CrossRef]

M. Sumetsky, Y. Dulashko, and A. Hale, Opt. Express 12, 3521 (2004).
[CrossRef] [PubMed]

2003 (1)

A. V. Maslov and C. Z. Ning, Appl. Phys. Lett. 83, 1237 (2003).
[CrossRef]

1989 (2)

1988 (3)

P. Urquhart, J. Opt. Soc. Am. A 5, 803 (1988).
[CrossRef]

N. J. Doran and D. Wood, Opt. Lett. 13, 56 (1988).
[CrossRef] [PubMed]

C. A. Millar, I. D. Miller, D. B. Mortimore, B. J. Ainslie, and P. Urquhart, IEE Proc.-J: Optoelectron. 135, 303 (1988).
[CrossRef]

1987 (4)

1986 (1)

J. Stone and D. Marcuse, J. Lightwave Technol. LT-14, 382 (1986).
[CrossRef]

1985 (1)

Aggarwal, I. D.

Ainslie, B. J.

C. A. Millar, I. D. Miller, D. B. Mortimore, B. J. Ainslie, and P. Urquhart, IEE Proc.-J: Optoelectron. 135, 303 (1988).
[CrossRef]

I. D. Miller, D. B. Mortimore, P. Urquhart, B. J. Ainslie, S. P. Craig, C. A. Millar, and D. B. Payne, Appl. Opt. 26, 2197 (1987).
[CrossRef] [PubMed]

Bao, J. M.

C. J. Barrelet, J. M. Bao, M. Loncar, H.-G. Park, F. Capasso, and C. M. Lieber, Nano Lett. 6, 11 (2006).
[CrossRef] [PubMed]

Barrelet, C. J.

C. J. Barrelet, J. M. Bao, M. Loncar, H.-G. Park, F. Capasso, and C. M. Lieber, Nano Lett. 6, 11 (2006).
[CrossRef] [PubMed]

A. B. Greytak, C. J. Barrelet, Y. Li, and C. M. Lieber, Appl. Phys. Lett. 87, 151103 (2005).
[CrossRef]

Bertholds, A.

Brambilla, G.

Brierley, M.

Capasso, F.

C. J. Barrelet, J. M. Bao, M. Loncar, H.-G. Park, F. Capasso, and C. M. Lieber, Nano Lett. 6, 11 (2006).
[CrossRef] [PubMed]

Chen, X. W.

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, Nano Lett. 5, 259 (2005).
[CrossRef] [PubMed]

Craig, S. P.

Das, G.

G. Das and J. W. Y. Lit, IEEE Photon. Technol. Lett. 16, 60 (2004).
[CrossRef]

Dong, X.

Doran, N. J.

Dulashko, Y.

M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, Appl. Phys. Lett. 86, 161108 (2005).
[CrossRef]

M. Sumetsky, Y. Dulashko, and A. Hale, Opt. Express 12, 3521 (2004).
[CrossRef] [PubMed]

Eggleton, B. J.

Fini, J. M.

M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, Appl. Phys. Lett. 86, 161108 (2005).
[CrossRef]

Fu, J.

Fu, L. B.

L. B. Fu, M. D. Pelusi, E. C. Magi, V. G. Ta'eed, and B. J. Eggleton, Electron. Lett. 44, 44 (2008).
[CrossRef]

Gattass, R. R.

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, Nano Lett. 5, 259 (2005).
[CrossRef] [PubMed]

Greytak, A. B.

A. B. Greytak, C. J. Barrelet, Y. Li, and C. M. Lieber, Appl. Phys. Lett. 87, 151103 (2005).
[CrossRef]

Hale, A.

M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, Appl. Phys. Lett. 86, 161108 (2005).
[CrossRef]

M. Sumetsky, Y. Dulashko, and A. Hale, Opt. Express 12, 3521 (2004).
[CrossRef] [PubMed]

Han, Y.

He, J. L.

He, S. L.

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, Nano Lett. 5, 259 (2005).
[CrossRef] [PubMed]

Horak, P.

Hu, L. L.

Huang, K. J.

Huang, Y. Y.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Jeong, M. Y.

Jiang, X. S.

X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, and L. M. Tong, Appl. Phys. Lett. 89, 143513 (2006).
[CrossRef]

Kim, C.

Lamont, M. R. E.

Lee, J. H.

Lee, R. K.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Li, Y.

A. B. Greytak, C. J. Barrelet, Y. Li, and C. M. Lieber, Appl. Phys. Lett. 87, 151103 (2005).
[CrossRef]

Li, Y. H.

Y. H. Li and L. M. Tong, Opt. Lett. 33, 303 (2008).
[CrossRef] [PubMed]

X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, and L. M. Tong, Appl. Phys. Lett. 89, 143513 (2006).
[CrossRef]

Liang, W.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Lieber, C. M.

C. J. Barrelet, J. M. Bao, M. Loncar, H.-G. Park, F. Capasso, and C. M. Lieber, Nano Lett. 6, 11 (2006).
[CrossRef] [PubMed]

A. B. Greytak, C. J. Barrelet, Y. Li, and C. M. Lieber, Appl. Phys. Lett. 87, 151103 (2005).
[CrossRef]

Lit, J. W. Y.

G. Das and J. W. Y. Lit, IEEE Photon. Technol. Lett. 16, 60 (2004).
[CrossRef]

Liu, L.

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, Nano Lett. 5, 259 (2005).
[CrossRef] [PubMed]

Loncar, M.

C. J. Barrelet, J. M. Bao, M. Loncar, H.-G. Park, F. Capasso, and C. M. Lieber, Nano Lett. 6, 11 (2006).
[CrossRef] [PubMed]

Lou, J. Y.

Luan, F.

Ma, Z.

Magi, E.

Magi, E. C.

L. B. Fu, M. D. Pelusi, E. C. Magi, V. G. Ta'eed, and B. J. Eggleton, Electron. Lett. 44, 44 (2008).
[CrossRef]

Mallinson, S. R.

Mansuripur, M.

Marcuse, D.

J. Stone and D. Marcuse, J. Lightwave Technol. LT-14, 382 (1986).
[CrossRef]

Maslov, A. V.

A. V. Maslov and C. Z. Ning, Appl. Phys. Lett. 83, 1237 (2003).
[CrossRef]

Maystre, F.

Mazur, E.

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, Nano Lett. 5, 259 (2005).
[CrossRef] [PubMed]

Millar, C. A.

C. A. Millar, I. D. Miller, D. B. Mortimore, B. J. Ainslie, and P. Urquhart, IEE Proc.-J: Optoelectron. 135, 303 (1988).
[CrossRef]

I. D. Miller, D. B. Mortimore, P. Urquhart, B. J. Ainslie, S. P. Craig, C. A. Millar, and D. B. Payne, Appl. Opt. 26, 2197 (1987).
[CrossRef] [PubMed]

Miller, I. D.

C. A. Millar, I. D. Miller, D. B. Mortimore, B. J. Ainslie, and P. Urquhart, IEE Proc.-J: Optoelectron. 135, 303 (1988).
[CrossRef]

I. D. Miller, D. B. Mortimore, P. Urquhart, B. J. Ainslie, S. P. Craig, C. A. Millar, and D. B. Payne, Appl. Opt. 26, 2197 (1987).
[CrossRef] [PubMed]

Monzón-Hernández, D.

Mortimore, D. B.

C. A. Millar, I. D. Miller, D. B. Mortimore, B. J. Ainslie, and P. Urquhart, IEE Proc.-J: Optoelectron. 135, 303 (1988).
[CrossRef]

I. D. Miller, D. B. Mortimore, P. Urquhart, B. J. Ainslie, S. P. Craig, C. A. Millar, and D. B. Payne, Appl. Opt. 26, 2197 (1987).
[CrossRef] [PubMed]

Moss, D. J.

Muller, J. M.

Ning, C. Z.

A. V. Maslov and C. Z. Ning, Appl. Phys. Lett. 83, 1237 (2003).
[CrossRef]

Park, H.-G.

C. J. Barrelet, J. M. Bao, M. Loncar, H.-G. Park, F. Capasso, and C. M. Lieber, Nano Lett. 6, 11 (2006).
[CrossRef] [PubMed]

Payne, D. B.

Pelusi, M. D.

Peyghambarian, N.

Polynkin, A.

Polynkin, P.

Qiu, J. R.

Qiu, M.

Sanghera, J. S.

Shaw, L. B.

Shen, Y. H.

Stone, J.

J. Stone and D. Marcuse, J. Lightwave Technol. LT-14, 382 (1986).
[CrossRef]

Sumetsky, M.

M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, Appl. Phys. Lett. 86, 161108 (2005).
[CrossRef]

M. Sumetsky, Y. Dulashko, and A. Hale, Opt. Express 12, 3521 (2004).
[CrossRef] [PubMed]

Ta'eed, V. G.

L. B. Fu, M. D. Pelusi, E. C. Magi, V. G. Ta'eed, and B. J. Eggleton, Electron. Lett. 44, 44 (2008).
[CrossRef]

Tong, L. M.

Urquhart, P.

Van de Stadt, H.

Vienne, G.

X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, and L. M. Tong, Appl. Phys. Lett. 89, 143513 (2006).
[CrossRef]

Villatoro, J.

Wang, S. S.

Wood, D.

Xu, F.

Xu, Y.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Yang, Q.

Yariv, A.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Ye, Z. Z.

Zhang, J. J.

Appl. Opt. (5)

Appl. Phys. Lett. (5)

X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, and L. M. Tong, Appl. Phys. Lett. 89, 143513 (2006).
[CrossRef]

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, Appl. Phys. Lett. 86, 161108 (2005).
[CrossRef]

A. V. Maslov and C. Z. Ning, Appl. Phys. Lett. 83, 1237 (2003).
[CrossRef]

A. B. Greytak, C. J. Barrelet, Y. Li, and C. M. Lieber, Appl. Phys. Lett. 87, 151103 (2005).
[CrossRef]

Electron. Lett. (1)

L. B. Fu, M. D. Pelusi, E. C. Magi, V. G. Ta'eed, and B. J. Eggleton, Electron. Lett. 44, 44 (2008).
[CrossRef]

IEE Proc.-J: Optoelectron. (1)

C. A. Millar, I. D. Miller, D. B. Mortimore, B. J. Ainslie, and P. Urquhart, IEE Proc.-J: Optoelectron. 135, 303 (1988).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

G. Das and J. W. Y. Lit, IEEE Photon. Technol. Lett. 16, 60 (2004).
[CrossRef]

J. Lightwave Technol. (1)

J. Stone and D. Marcuse, J. Lightwave Technol. LT-14, 382 (1986).
[CrossRef]

J. Opt. Soc. Am. A (2)

Nano Lett. (2)

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, Nano Lett. 5, 259 (2005).
[CrossRef] [PubMed]

C. J. Barrelet, J. M. Bao, M. Loncar, H.-G. Park, F. Capasso, and C. M. Lieber, Nano Lett. 6, 11 (2006).
[CrossRef] [PubMed]

Opt. Express (7)

Opt. Lett. (4)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of an all-fiber F–P cavity formed with two loop mirrors. Light is launched from port 1 and collected from port 2. l i ( i = 1 , 2 , 3 ) are the fractional lengths of the microfiber.

Fig. 2
Fig. 2

(a) Schematic illustration of a microfiber F–P resonator supported on a low-index Mg F 2 crystal. (b) Optical microscope image of a Mg F 2 -supported F–P resonator assembled using a 1.4 μ m diameter tellurite microfiber with a total length of about 1 mm . The white arrows indicate the direction of light propagation.

Fig. 3
Fig. 3

Typical transmission spectrum of a F–P resonator assembled with a 1.69 μ m diameter tellurite microfiber. The dotted line stands for the theoretical fit.

Fig. 4
Fig. 4

Transmission spectra of a F–P resonator (a) before and (b) after tuning the overlapping length. The resonator is assembled using a 1.42 μ m diameter tellurite microfiber with an effective cavity length of 323 μ m .

Fig. 5
Fig. 5

Transmission spectra of a F–P resonator assembled using a 1.69 μ m diameter tellurite microfiber. The effective cavity length of the resonator is tuned from (a) 618 to (b) 577 μ m .

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I out I in = T 1 T 2 exp ( 2 α l 3 ) [ 1 + ( R 1 R 2 ) 1 2 exp ( 2 α l 3 ) ] 2 1 4 ( R 1 R 2 ) 1 2 exp ( 2 α l 3 ) sin 2 [ β ( l 1 2 + l 2 2 + l 3 ) ] [ 1 + ( R 1 R 2 ) 1 2 exp ( 2 α l 3 ) ] 2 ,
β L = ( m + 1 2 ) π ,
Δ v = c [ n e ( l 1 + l 2 + 2 l 3 ) ] = c ( 2 n e L ) .

Metrics