Abstract

We report the generation of optical pulse trains with 380as of residual timing jitter (1Hz1MHz) from a mode-locked external-cavity semiconductor laser, through a combination of optimizing the intracavity dispersion and utilizing a high-power, low-noise InGaAsP quantum-well slab-coupled optical waveguide amplifier gain medium. This is, to our knowledge, the lowest residual timing jitter reported to date from an actively mode-locked laser.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, IEEE Trans. Microwave Theory Tech. 49, 1840 (2001).
    [CrossRef]
  2. S. Gee, F. Quinlan, S. Ozharar, and P. J. Delfyett, IEEE Photon. Technol. Lett. 17, 199 (2005).
    [CrossRef]
  3. L. A. Jiang, E. P. Ippen, and H. Yokoyama, J. Opt. Fiber Commun. Rep. 2, 1 (2005).
    [CrossRef]
  4. F. Rana, R. Ram, and H. A. Haus, IEEE J. Quantum Electron. 40, 41 (2004).
    [CrossRef]
  5. P. Juodawlkis, J. J. Plant, R. K. Huang, L. J. Missaggia, and J. P. Donnelly, IEEE Photon. Technol. Lett. 17, 279 (2005).
    [CrossRef]
  6. S. Gee, F. Quinlan, S. Ozharar, P. J. Delfyett, J. J. Plant, and P. W. Juodawlkis, Opt. Lett. 30, 2742 (2005).
    [CrossRef] [PubMed]
  7. A. Lance, W. Seal, and F. Labaar, Infrared and Millimeter Waves 11, 239 (1984).
  8. D. R. Hjelme and A. R. Mickelson, IEEE J. Quantum Electron. 28, 1594 (1992).
    [CrossRef]
  9. H. A. Haus and A. Mecozzi, IEEE J. Quantum Electron. 29, 983 (1993).
    [CrossRef]
  10. K. Petermann, IEEE J. Quantum Electron. 15, 566 (1979).
    [CrossRef]

2005 (4)

S. Gee, F. Quinlan, S. Ozharar, and P. J. Delfyett, IEEE Photon. Technol. Lett. 17, 199 (2005).
[CrossRef]

L. A. Jiang, E. P. Ippen, and H. Yokoyama, J. Opt. Fiber Commun. Rep. 2, 1 (2005).
[CrossRef]

P. Juodawlkis, J. J. Plant, R. K. Huang, L. J. Missaggia, and J. P. Donnelly, IEEE Photon. Technol. Lett. 17, 279 (2005).
[CrossRef]

S. Gee, F. Quinlan, S. Ozharar, P. J. Delfyett, J. J. Plant, and P. W. Juodawlkis, Opt. Lett. 30, 2742 (2005).
[CrossRef] [PubMed]

2004 (1)

F. Rana, R. Ram, and H. A. Haus, IEEE J. Quantum Electron. 40, 41 (2004).
[CrossRef]

2001 (1)

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, IEEE Trans. Microwave Theory Tech. 49, 1840 (2001).
[CrossRef]

1993 (1)

H. A. Haus and A. Mecozzi, IEEE J. Quantum Electron. 29, 983 (1993).
[CrossRef]

1992 (1)

D. R. Hjelme and A. R. Mickelson, IEEE J. Quantum Electron. 28, 1594 (1992).
[CrossRef]

1984 (1)

A. Lance, W. Seal, and F. Labaar, Infrared and Millimeter Waves 11, 239 (1984).

1979 (1)

K. Petermann, IEEE J. Quantum Electron. 15, 566 (1979).
[CrossRef]

Betts, G. E.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, IEEE Trans. Microwave Theory Tech. 49, 1840 (2001).
[CrossRef]

Delfyett, P. J.

S. Gee, F. Quinlan, S. Ozharar, and P. J. Delfyett, IEEE Photon. Technol. Lett. 17, 199 (2005).
[CrossRef]

S. Gee, F. Quinlan, S. Ozharar, P. J. Delfyett, J. J. Plant, and P. W. Juodawlkis, Opt. Lett. 30, 2742 (2005).
[CrossRef] [PubMed]

Donnelly, J. P.

P. Juodawlkis, J. J. Plant, R. K. Huang, L. J. Missaggia, and J. P. Donnelly, IEEE Photon. Technol. Lett. 17, 279 (2005).
[CrossRef]

Gee, S.

S. Gee, F. Quinlan, S. Ozharar, P. J. Delfyett, J. J. Plant, and P. W. Juodawlkis, Opt. Lett. 30, 2742 (2005).
[CrossRef] [PubMed]

S. Gee, F. Quinlan, S. Ozharar, and P. J. Delfyett, IEEE Photon. Technol. Lett. 17, 199 (2005).
[CrossRef]

Hargreaves, J. J.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, IEEE Trans. Microwave Theory Tech. 49, 1840 (2001).
[CrossRef]

Haus, H. A.

F. Rana, R. Ram, and H. A. Haus, IEEE J. Quantum Electron. 40, 41 (2004).
[CrossRef]

H. A. Haus and A. Mecozzi, IEEE J. Quantum Electron. 29, 983 (1993).
[CrossRef]

Hjelme, D. R.

D. R. Hjelme and A. R. Mickelson, IEEE J. Quantum Electron. 28, 1594 (1992).
[CrossRef]

Huang, R. K.

P. Juodawlkis, J. J. Plant, R. K. Huang, L. J. Missaggia, and J. P. Donnelly, IEEE Photon. Technol. Lett. 17, 279 (2005).
[CrossRef]

Ippen, E. P.

L. A. Jiang, E. P. Ippen, and H. Yokoyama, J. Opt. Fiber Commun. Rep. 2, 1 (2005).
[CrossRef]

Jiang, L. A.

L. A. Jiang, E. P. Ippen, and H. Yokoyama, J. Opt. Fiber Commun. Rep. 2, 1 (2005).
[CrossRef]

Juodawlkis, P.

P. Juodawlkis, J. J. Plant, R. K. Huang, L. J. Missaggia, and J. P. Donnelly, IEEE Photon. Technol. Lett. 17, 279 (2005).
[CrossRef]

Juodawlkis, P. W.

S. Gee, F. Quinlan, S. Ozharar, P. J. Delfyett, J. J. Plant, and P. W. Juodawlkis, Opt. Lett. 30, 2742 (2005).
[CrossRef] [PubMed]

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, IEEE Trans. Microwave Theory Tech. 49, 1840 (2001).
[CrossRef]

Labaar, F.

A. Lance, W. Seal, and F. Labaar, Infrared and Millimeter Waves 11, 239 (1984).

Lance, A.

A. Lance, W. Seal, and F. Labaar, Infrared and Millimeter Waves 11, 239 (1984).

Mecozzi, A.

H. A. Haus and A. Mecozzi, IEEE J. Quantum Electron. 29, 983 (1993).
[CrossRef]

Mickelson, A. R.

D. R. Hjelme and A. R. Mickelson, IEEE J. Quantum Electron. 28, 1594 (1992).
[CrossRef]

Missaggia, L. J.

P. Juodawlkis, J. J. Plant, R. K. Huang, L. J. Missaggia, and J. P. Donnelly, IEEE Photon. Technol. Lett. 17, 279 (2005).
[CrossRef]

O'Donnell, F. J.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, IEEE Trans. Microwave Theory Tech. 49, 1840 (2001).
[CrossRef]

Ozharar, S.

S. Gee, F. Quinlan, S. Ozharar, and P. J. Delfyett, IEEE Photon. Technol. Lett. 17, 199 (2005).
[CrossRef]

S. Gee, F. Quinlan, S. Ozharar, P. J. Delfyett, J. J. Plant, and P. W. Juodawlkis, Opt. Lett. 30, 2742 (2005).
[CrossRef] [PubMed]

Petermann, K.

K. Petermann, IEEE J. Quantum Electron. 15, 566 (1979).
[CrossRef]

Plant, J. J.

P. Juodawlkis, J. J. Plant, R. K. Huang, L. J. Missaggia, and J. P. Donnelly, IEEE Photon. Technol. Lett. 17, 279 (2005).
[CrossRef]

S. Gee, F. Quinlan, S. Ozharar, P. J. Delfyett, J. J. Plant, and P. W. Juodawlkis, Opt. Lett. 30, 2742 (2005).
[CrossRef] [PubMed]

Quinlan, F.

S. Gee, F. Quinlan, S. Ozharar, P. J. Delfyett, J. J. Plant, and P. W. Juodawlkis, Opt. Lett. 30, 2742 (2005).
[CrossRef] [PubMed]

S. Gee, F. Quinlan, S. Ozharar, and P. J. Delfyett, IEEE Photon. Technol. Lett. 17, 199 (2005).
[CrossRef]

Ram, R.

F. Rana, R. Ram, and H. A. Haus, IEEE J. Quantum Electron. 40, 41 (2004).
[CrossRef]

Rana, F.

F. Rana, R. Ram, and H. A. Haus, IEEE J. Quantum Electron. 40, 41 (2004).
[CrossRef]

Ray, K. G.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, IEEE Trans. Microwave Theory Tech. 49, 1840 (2001).
[CrossRef]

Seal, W.

A. Lance, W. Seal, and F. Labaar, Infrared and Millimeter Waves 11, 239 (1984).

Twichell, J. C.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, IEEE Trans. Microwave Theory Tech. 49, 1840 (2001).
[CrossRef]

Wasserman, J. L.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, IEEE Trans. Microwave Theory Tech. 49, 1840 (2001).
[CrossRef]

Williamson, R. C.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, IEEE Trans. Microwave Theory Tech. 49, 1840 (2001).
[CrossRef]

Yokoyama, H.

L. A. Jiang, E. P. Ippen, and H. Yokoyama, J. Opt. Fiber Commun. Rep. 2, 1 (2005).
[CrossRef]

Younger, R. D.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, IEEE Trans. Microwave Theory Tech. 49, 1840 (2001).
[CrossRef]

IEEE J. Quantum Electron. (4)

F. Rana, R. Ram, and H. A. Haus, IEEE J. Quantum Electron. 40, 41 (2004).
[CrossRef]

D. R. Hjelme and A. R. Mickelson, IEEE J. Quantum Electron. 28, 1594 (1992).
[CrossRef]

H. A. Haus and A. Mecozzi, IEEE J. Quantum Electron. 29, 983 (1993).
[CrossRef]

K. Petermann, IEEE J. Quantum Electron. 15, 566 (1979).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

P. Juodawlkis, J. J. Plant, R. K. Huang, L. J. Missaggia, and J. P. Donnelly, IEEE Photon. Technol. Lett. 17, 279 (2005).
[CrossRef]

S. Gee, F. Quinlan, S. Ozharar, and P. J. Delfyett, IEEE Photon. Technol. Lett. 17, 199 (2005).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, IEEE Trans. Microwave Theory Tech. 49, 1840 (2001).
[CrossRef]

Infrared and Millimeter Waves (1)

A. Lance, W. Seal, and F. Labaar, Infrared and Millimeter Waves 11, 239 (1984).

J. Opt. Fiber Commun. Rep. (1)

L. A. Jiang, E. P. Ippen, and H. Yokoyama, J. Opt. Fiber Commun. Rep. 2, 1 (2005).
[CrossRef]

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the laser setup. SCOWA, slab-coupled optical waveguide amplifier; I, optical isolator; AM, electro-optic modulator; PC, polarization controller; SLCO, sapphire-loaded cavity oscillator; F, bandpass filter.

Fig. 2
Fig. 2

Output spectra of the laser output pulse with 8 m of DCF. (a) Whole spectrum measured by 0.01 nm of resolution, (b) portion of the spectrum measured by 1 MHz of resolution.

Fig. 3
Fig. 3

Single sideband power spectral density of relative phase noise and integrated jitter.

Fig. 4
Fig. 4

Cavity dispersion dependence of the laser output. (a) Timing jitter ( 1 Hz 100 MHz ) , (b) autocorrelation width and pulse chirp. In (b), the solid curve is the measured autocorrelation, the dashed curve is the expected transform-limited autocorrelation, and the dotted curve is the magnitude of chirp.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

O ( t ) = ( B j D ) 1 2 2 t 2 + ( a m + j p m ) ( cos ( Ω t ) 1 ) ,
jitter ( 1 + β 2 ) 3 2 τ Ω 2 ( a m + β p m ) ,

Metrics