Abstract

The nonlinear dynamics of an optically injected semiconductor laser are explored for radio-over-fiber uplink transmission. Under optical injection locking, the laser at the base station is operated in the period-one oscillation state, where its intensity oscillates at a tunable microwave frequency. When the oscillation is tuned to the subcarrier frequency, it is further locked by the uplink microwave signal. By simply using an ordinary 2.5-Gbps-grade semiconductor laser, uplink transmission of the phase-shift keying (PSK) signal at a subcarrier of 16GHz with bit-error rate of less than 1011 is demonstrated experimentally. Microwave PSK to optical PSK is achieved at the double-locked laser, which allows all-optical demodulation without any high-speed microwave electronics.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. B. Simpson and F. Doft, IEEE Photonics Technol. Lett. 11, 1476 (1999).
    [CrossRef]
  2. A. Kaszubowska, P. Anandarajah, and L. P. Barry, IEEE Photonics Technol. Lett. 14, 233 (2002).
    [CrossRef]
  3. S. C. Chan, S. K. Hwang, and J. M. Liu, Opt. Lett. 31, 2254 (2006).
    [CrossRef] [PubMed]
  4. S. C. Chan, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron. (to be published).
  5. X. L. Fu, C. C. Cui, and S. C. Chan, in Frontiers in Optics (Optical Society of America, 2009), paper FMD3.
  6. C. Lim, A. Nirmalathas, and D. Novak, IEEE Trans. Microwave Theory Tech. 47, 1351 (1999).
    [CrossRef]
  7. J. J. Yu, Z. S. Jia, T. Wang, G. K. Chang, IEEE Photonics Technol. Lett. 19, 140 (2007).
    [CrossRef]
  8. L. Chen, H. Wen, and S. C. Wen, IEEE Photonics Technol. Lett. 18, 2056 (2006).
    [CrossRef]
  9. Y. Q. Song, X. P. Zheng, H. Y. Zhang, Y. L. Guo, and B. K. Zhou, Opt. Lett. 32, 2248 (2007).
    [CrossRef] [PubMed]

2007

J. J. Yu, Z. S. Jia, T. Wang, G. K. Chang, IEEE Photonics Technol. Lett. 19, 140 (2007).
[CrossRef]

Y. Q. Song, X. P. Zheng, H. Y. Zhang, Y. L. Guo, and B. K. Zhou, Opt. Lett. 32, 2248 (2007).
[CrossRef] [PubMed]

2006

S. C. Chan, S. K. Hwang, and J. M. Liu, Opt. Lett. 31, 2254 (2006).
[CrossRef] [PubMed]

L. Chen, H. Wen, and S. C. Wen, IEEE Photonics Technol. Lett. 18, 2056 (2006).
[CrossRef]

2002

A. Kaszubowska, P. Anandarajah, and L. P. Barry, IEEE Photonics Technol. Lett. 14, 233 (2002).
[CrossRef]

1999

C. Lim, A. Nirmalathas, and D. Novak, IEEE Trans. Microwave Theory Tech. 47, 1351 (1999).
[CrossRef]

T. B. Simpson and F. Doft, IEEE Photonics Technol. Lett. 11, 1476 (1999).
[CrossRef]

Anandarajah, P.

A. Kaszubowska, P. Anandarajah, and L. P. Barry, IEEE Photonics Technol. Lett. 14, 233 (2002).
[CrossRef]

Barry, L. P.

A. Kaszubowska, P. Anandarajah, and L. P. Barry, IEEE Photonics Technol. Lett. 14, 233 (2002).
[CrossRef]

Chan, S. C.

S. C. Chan, S. K. Hwang, and J. M. Liu, Opt. Lett. 31, 2254 (2006).
[CrossRef] [PubMed]

S. C. Chan, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron. (to be published).

X. L. Fu, C. C. Cui, and S. C. Chan, in Frontiers in Optics (Optical Society of America, 2009), paper FMD3.

Chang, G. K.

J. J. Yu, Z. S. Jia, T. Wang, G. K. Chang, IEEE Photonics Technol. Lett. 19, 140 (2007).
[CrossRef]

Chen, L.

L. Chen, H. Wen, and S. C. Wen, IEEE Photonics Technol. Lett. 18, 2056 (2006).
[CrossRef]

Cui, C. C.

X. L. Fu, C. C. Cui, and S. C. Chan, in Frontiers in Optics (Optical Society of America, 2009), paper FMD3.

Doft, F.

T. B. Simpson and F. Doft, IEEE Photonics Technol. Lett. 11, 1476 (1999).
[CrossRef]

Fu, X. L.

X. L. Fu, C. C. Cui, and S. C. Chan, in Frontiers in Optics (Optical Society of America, 2009), paper FMD3.

Guo, Y. L.

Hwang, S. K.

Jia, Z. S.

J. J. Yu, Z. S. Jia, T. Wang, G. K. Chang, IEEE Photonics Technol. Lett. 19, 140 (2007).
[CrossRef]

Kaszubowska, A.

A. Kaszubowska, P. Anandarajah, and L. P. Barry, IEEE Photonics Technol. Lett. 14, 233 (2002).
[CrossRef]

Lim, C.

C. Lim, A. Nirmalathas, and D. Novak, IEEE Trans. Microwave Theory Tech. 47, 1351 (1999).
[CrossRef]

Liu, J. M.

Nirmalathas, A.

C. Lim, A. Nirmalathas, and D. Novak, IEEE Trans. Microwave Theory Tech. 47, 1351 (1999).
[CrossRef]

Novak, D.

C. Lim, A. Nirmalathas, and D. Novak, IEEE Trans. Microwave Theory Tech. 47, 1351 (1999).
[CrossRef]

Simpson, T. B.

T. B. Simpson and F. Doft, IEEE Photonics Technol. Lett. 11, 1476 (1999).
[CrossRef]

Song, Y. Q.

Wang, T.

J. J. Yu, Z. S. Jia, T. Wang, G. K. Chang, IEEE Photonics Technol. Lett. 19, 140 (2007).
[CrossRef]

Wen, H.

L. Chen, H. Wen, and S. C. Wen, IEEE Photonics Technol. Lett. 18, 2056 (2006).
[CrossRef]

Wen, S. C.

L. Chen, H. Wen, and S. C. Wen, IEEE Photonics Technol. Lett. 18, 2056 (2006).
[CrossRef]

Yu, J. J.

J. J. Yu, Z. S. Jia, T. Wang, G. K. Chang, IEEE Photonics Technol. Lett. 19, 140 (2007).
[CrossRef]

Zhang, H. Y.

Zheng, X. P.

Zhou, B. K.

IEEE J. Quantum Electron.

S. C. Chan, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron. (to be published).

IEEE Photonics Technol. Lett.

J. J. Yu, Z. S. Jia, T. Wang, G. K. Chang, IEEE Photonics Technol. Lett. 19, 140 (2007).
[CrossRef]

L. Chen, H. Wen, and S. C. Wen, IEEE Photonics Technol. Lett. 18, 2056 (2006).
[CrossRef]

T. B. Simpson and F. Doft, IEEE Photonics Technol. Lett. 11, 1476 (1999).
[CrossRef]

A. Kaszubowska, P. Anandarajah, and L. P. Barry, IEEE Photonics Technol. Lett. 14, 233 (2002).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

C. Lim, A. Nirmalathas, and D. Novak, IEEE Trans. Microwave Theory Tech. 47, 1351 (1999).
[CrossRef]

Opt. Lett.

Other

X. L. Fu, C. C. Cui, and S. C. Chan, in Frontiers in Optics (Optical Society of America, 2009), paper FMD3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the experimental setup. ML, master laser; SL, slave laser; PG, pattern generator; MIX, mixer; FC, fiber coupler; OSA, optical spectrum analyzer; PSA, power spectrum analyzer; PD, photodetector; A, amplifier; OSC, oscilloscope; O/E, optical-to-electrical converter.

Fig. 2
Fig. 2

Optical spectrum of the upstream signal with no current modulation applied. The gray curve is obtained with no optical injection. The black curve is obtained with optical injection. The arrow indicates the regeneration from the optical injection. P1 oscillation at f 0 = 16 GHz is observed. (Resolution bandwidth, 7.5 GHz .)

Fig. 3
Fig. 3

Power spectrum of the upstream signal. The dashed curve is obtained with optical injection only. The black curve is obtained under both optical injection and sinusoidal current modulation at f 0 . The gray curve is obtained with current modulation but not optical injection. (Resolution bandwidth, 300 kHz .)

Fig. 4
Fig. 4

Power spectrum of the upstream signal modulated with 180 Mbps PSK uplink signal. The black curve is obtained with optical injection. The gray curve is obtained without optical injection.

Fig. 5
Fig. 5

Differential demodulation of data. (a) Input signal. (b) Recovered signal when optical injection is applied. (c) Recovered signal when optical injection is off.

Fig. 6
Fig. 6

BER as a function of the received optical power under different temperatures as indicated. Optical injection remains on, except for the open triangles.

Metrics