Abstract

Metallic back structures with one-dimensional periodic nanoridges attached to a thin-film amorphous Si (a-Si) solar cell are numerically studied. At the interfaces between a-Si and metal materials, the excitation of surface-plasmon polaritons leads to obvious absorption enhancements in a wide near-IR range for different ridge shapes and periods. The highest enhancement factor of the cell external quantum efficiency is estimated to be 3.32. The optimized structure can achieve an increase of 17.12% in the cell efficiency.

© 2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spatial distribution of absorption in plasmonic thin film solar cells

Chien-Chang Chao, Chih-Ming Wang, and Jenq-Yang Chang
Opt. Express 18(11) 11763-11771 (2010)

Periodic anti-ring back reflectors for hydrogenated amorphous silicon thin-film solar cells

Po-Yuan Chen, Hui-Hsin Hsiao, Chung-I Ho, Chi-Chih Ho, Wei-Li Lee, Hung-Chun Chang, Si-Chen Lee, Jian-Zhang Chen, and I-Chun Cheng
Opt. Express 22(S4) A1128-A1136 (2014)

Design of efficient plasmonic thin-film solar cells based on mode splitting

Tong Li, Lei Dai, and Chun Jiang
J. Opt. Soc. Am. B 28(8) 1793-1797 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription