Abstract

One of the current problems of micro-optofluidics is the choice of a suitable liquid with a high refractive index (RI). We report the use of a low-RI liquid in a biconcave liquid-core liquid-cladding lens for focusing light. For the characterization of the lens, a telescope system was constructed from polydimethylsiloxane lenses to collimate and expand a light beam emitted from an optical fiber. The tunable optofluidic biconcave lens focuses the parallel beam. Fluorescent dye diluted in an index-matching liquid was used for the visualization of the light rays in a beam-tracing chamber. The focused beam is tuned by adjusting the flow rate ratio between core and cladding streams.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Camou, H. Fujita, and T. Fujii, Lab Chip 3, 40 (2003).
    [CrossRef]
  2. J. Wenger, D. Gerard, H. Aouani, and H. Rigneault, Anal. Chem. 80, 6800 (2008).
    [CrossRef] [PubMed]
  3. S. K. Y. Tang, C. A. Stan, and G. M. Whitesides, Lab Chip 8, 395 (2008).
    [CrossRef] [PubMed]
  4. Y. C. Seow, A. Q. Liu, L. K. Chin, X. C. Li, H. J. Huang, T. H. Cheng, and X. Q. Zhou, Appl. Phys. Lett. 93, 084101 (2008).
    [CrossRef]
  5. C. L. Song, N. T. Nguyen, S. H. Tan, and A. K. Asundi, Lab Chip 9, 1178 (2009).
    [CrossRef] [PubMed]
  6. C. L. Song, N. T. Nguyen, S. H. Tan, and A. K. Asundi, J. Micromech. Microeng. 19, 085012 (2009).
    [CrossRef]
  7. X. L. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, Lab Chip 7, 1303 (2007).
    [CrossRef] [PubMed]
  8. M. Rosenauer and M. J. Vellekoop, Lab Chip 9, 1040 (2009).
    [CrossRef] [PubMed]

2009 (3)

C. L. Song, N. T. Nguyen, S. H. Tan, and A. K. Asundi, Lab Chip 9, 1178 (2009).
[CrossRef] [PubMed]

C. L. Song, N. T. Nguyen, S. H. Tan, and A. K. Asundi, J. Micromech. Microeng. 19, 085012 (2009).
[CrossRef]

M. Rosenauer and M. J. Vellekoop, Lab Chip 9, 1040 (2009).
[CrossRef] [PubMed]

2008 (3)

J. Wenger, D. Gerard, H. Aouani, and H. Rigneault, Anal. Chem. 80, 6800 (2008).
[CrossRef] [PubMed]

S. K. Y. Tang, C. A. Stan, and G. M. Whitesides, Lab Chip 8, 395 (2008).
[CrossRef] [PubMed]

Y. C. Seow, A. Q. Liu, L. K. Chin, X. C. Li, H. J. Huang, T. H. Cheng, and X. Q. Zhou, Appl. Phys. Lett. 93, 084101 (2008).
[CrossRef]

2007 (1)

X. L. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, Lab Chip 7, 1303 (2007).
[CrossRef] [PubMed]

2003 (1)

S. Camou, H. Fujita, and T. Fujii, Lab Chip 3, 40 (2003).
[CrossRef]

Aouani, H.

J. Wenger, D. Gerard, H. Aouani, and H. Rigneault, Anal. Chem. 80, 6800 (2008).
[CrossRef] [PubMed]

Asundi, A. K.

C. L. Song, N. T. Nguyen, S. H. Tan, and A. K. Asundi, Lab Chip 9, 1178 (2009).
[CrossRef] [PubMed]

C. L. Song, N. T. Nguyen, S. H. Tan, and A. K. Asundi, J. Micromech. Microeng. 19, 085012 (2009).
[CrossRef]

Camou, S.

S. Camou, H. Fujita, and T. Fujii, Lab Chip 3, 40 (2003).
[CrossRef]

Cheng, T. H.

Y. C. Seow, A. Q. Liu, L. K. Chin, X. C. Li, H. J. Huang, T. H. Cheng, and X. Q. Zhou, Appl. Phys. Lett. 93, 084101 (2008).
[CrossRef]

Chin, L. K.

Y. C. Seow, A. Q. Liu, L. K. Chin, X. C. Li, H. J. Huang, T. H. Cheng, and X. Q. Zhou, Appl. Phys. Lett. 93, 084101 (2008).
[CrossRef]

Fujii, T.

S. Camou, H. Fujita, and T. Fujii, Lab Chip 3, 40 (2003).
[CrossRef]

Fujita, H.

S. Camou, H. Fujita, and T. Fujii, Lab Chip 3, 40 (2003).
[CrossRef]

Gerard, D.

J. Wenger, D. Gerard, H. Aouani, and H. Rigneault, Anal. Chem. 80, 6800 (2008).
[CrossRef] [PubMed]

Huang, H. J.

Y. C. Seow, A. Q. Liu, L. K. Chin, X. C. Li, H. J. Huang, T. H. Cheng, and X. Q. Zhou, Appl. Phys. Lett. 93, 084101 (2008).
[CrossRef]

Huang, T. J.

X. L. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, Lab Chip 7, 1303 (2007).
[CrossRef] [PubMed]

Juluri, B. K.

X. L. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, Lab Chip 7, 1303 (2007).
[CrossRef] [PubMed]

Li, X. C.

Y. C. Seow, A. Q. Liu, L. K. Chin, X. C. Li, H. J. Huang, T. H. Cheng, and X. Q. Zhou, Appl. Phys. Lett. 93, 084101 (2008).
[CrossRef]

Liu, A. Q.

Y. C. Seow, A. Q. Liu, L. K. Chin, X. C. Li, H. J. Huang, T. H. Cheng, and X. Q. Zhou, Appl. Phys. Lett. 93, 084101 (2008).
[CrossRef]

Mao, X. L.

X. L. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, Lab Chip 7, 1303 (2007).
[CrossRef] [PubMed]

Nguyen, N. T.

C. L. Song, N. T. Nguyen, S. H. Tan, and A. K. Asundi, J. Micromech. Microeng. 19, 085012 (2009).
[CrossRef]

C. L. Song, N. T. Nguyen, S. H. Tan, and A. K. Asundi, Lab Chip 9, 1178 (2009).
[CrossRef] [PubMed]

Rigneault, H.

J. Wenger, D. Gerard, H. Aouani, and H. Rigneault, Anal. Chem. 80, 6800 (2008).
[CrossRef] [PubMed]

Rosenauer, M.

M. Rosenauer and M. J. Vellekoop, Lab Chip 9, 1040 (2009).
[CrossRef] [PubMed]

Seow, Y. C.

Y. C. Seow, A. Q. Liu, L. K. Chin, X. C. Li, H. J. Huang, T. H. Cheng, and X. Q. Zhou, Appl. Phys. Lett. 93, 084101 (2008).
[CrossRef]

Song, C. L.

C. L. Song, N. T. Nguyen, S. H. Tan, and A. K. Asundi, Lab Chip 9, 1178 (2009).
[CrossRef] [PubMed]

C. L. Song, N. T. Nguyen, S. H. Tan, and A. K. Asundi, J. Micromech. Microeng. 19, 085012 (2009).
[CrossRef]

Stan, C. A.

S. K. Y. Tang, C. A. Stan, and G. M. Whitesides, Lab Chip 8, 395 (2008).
[CrossRef] [PubMed]

Tan, S. H.

C. L. Song, N. T. Nguyen, S. H. Tan, and A. K. Asundi, Lab Chip 9, 1178 (2009).
[CrossRef] [PubMed]

C. L. Song, N. T. Nguyen, S. H. Tan, and A. K. Asundi, J. Micromech. Microeng. 19, 085012 (2009).
[CrossRef]

Tang, S. K. Y.

S. K. Y. Tang, C. A. Stan, and G. M. Whitesides, Lab Chip 8, 395 (2008).
[CrossRef] [PubMed]

Vellekoop, M. J.

M. Rosenauer and M. J. Vellekoop, Lab Chip 9, 1040 (2009).
[CrossRef] [PubMed]

Waldeisen, J. R.

X. L. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, Lab Chip 7, 1303 (2007).
[CrossRef] [PubMed]

Wenger, J.

J. Wenger, D. Gerard, H. Aouani, and H. Rigneault, Anal. Chem. 80, 6800 (2008).
[CrossRef] [PubMed]

Whitesides, G. M.

S. K. Y. Tang, C. A. Stan, and G. M. Whitesides, Lab Chip 8, 395 (2008).
[CrossRef] [PubMed]

Zhou, X. Q.

Y. C. Seow, A. Q. Liu, L. K. Chin, X. C. Li, H. J. Huang, T. H. Cheng, and X. Q. Zhou, Appl. Phys. Lett. 93, 084101 (2008).
[CrossRef]

Anal. Chem. (1)

J. Wenger, D. Gerard, H. Aouani, and H. Rigneault, Anal. Chem. 80, 6800 (2008).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

Y. C. Seow, A. Q. Liu, L. K. Chin, X. C. Li, H. J. Huang, T. H. Cheng, and X. Q. Zhou, Appl. Phys. Lett. 93, 084101 (2008).
[CrossRef]

J. Micromech. Microeng. (1)

C. L. Song, N. T. Nguyen, S. H. Tan, and A. K. Asundi, J. Micromech. Microeng. 19, 085012 (2009).
[CrossRef]

Lab Chip (5)

X. L. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, Lab Chip 7, 1303 (2007).
[CrossRef] [PubMed]

M. Rosenauer and M. J. Vellekoop, Lab Chip 9, 1040 (2009).
[CrossRef] [PubMed]

S. Camou, H. Fujita, and T. Fujii, Lab Chip 3, 40 (2003).
[CrossRef]

C. L. Song, N. T. Nguyen, S. H. Tan, and A. K. Asundi, Lab Chip 9, 1178 (2009).
[CrossRef] [PubMed]

S. K. Y. Tang, C. A. Stan, and G. M. Whitesides, Lab Chip 8, 395 (2008).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of an optofluidic system with a tunable biconcave lens. The system includes a telescope system, which collimates and expands the light beam, and an optofluidic biconcave lens to focus the rays. The multimode optical fiber has an NA of 0.22 and a diameter of 125 μ m . The radii of the interface of the PDMS solid lenses are 700 and 400 μ m . The diameter of the circular lens chamber is 1 mm. (b) Telescope system consisting of two PDMS lenses that collimate and expand the divergent beam from the multimode optical fiber ( NA = 0.22 ) . The outline depicts the ray propagation.

Fig. 2
Fig. 2

Liquid-core liquid-cladding biconcave lens formed in the circular chamber at different flow rate ratios: (a) Φ = 2.0 ; (b) Φ = 3.0 . Ethanol ( n = 1.36 ) works as core stream and benzyl alcohol ( n = 1.54 ) serves as cladding steams. The parallel beam leaving the telescope system passes through the biconcave lens and is focused to the optical axis. (c) For comparison, the circular chamber was fully filled with ethanol, which causes the parallel beam to diverge.

Fig. 3
Fig. 3

Under a flow rate ratio of 3.0, the intensity profiles along different curves (dashed curves in the inset) were measured and fitted with Gaussian curves. All the intensity values are normalized by the peak value of intensity along curve A. l A , l B , and l C are the distances from the dashed curves to the concave lens.

Fig. 4
Fig. 4

Characteristics of the beam formed by the optofluidic lens at different flow rate ratios. The intensity profiles were measured along the dashed curves in the insets. Gaussian curves are fitted to intensity profiles. All the intensity values are normalized by the peak value of intensity profile in inset (a). The FWHMs for the cases depicted in insets (a), (b), and (c) are 430, 370, and 370 μ m , respectively.

Metrics