Abstract

We show that Ce3+ can be an efficient sensitizer for Yb3+ in the host lattice of yttrium aluminum garnet (YAG). With blue-light excitation to induce the 4f5d transition of Ce3+, characteristic near-IR emission of Yb3+ due to transition of F522F722 peaking at 1030nm is generated as a result of energy transfer from Ce3+ to Yb3+. The result of spectral evolution with temperature indicates that the efficiency of energy transfer is enhanced owing to thermal effect. This evidence implies that the phonon-assisted process participates in the downconversion of YAG: Ce3+, Yb3+.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Trupke, M. A. Green, and P. Wurfel, J. Appl. Phys. 92, 1668 (2002).
    [CrossRef]
  2. P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, Phys. Rev. B 71, 014119 (2005).
    [CrossRef]
  3. B. M. van der Ende, L. Aarts, and A. Meijerink, Adv. Mater 21, 3073 (2009).
    [CrossRef]
  4. S. Ye, B. Zhu, J. Chen, J. Luo, and J. Qiu, Appl. Phys. Lett. 92, 141112/1 (2008).
  5. Q. Zhang, Y. Pan, and Z. Jiang, Appl. Phys. Lett. 91, 051903/1 (2007).
  6. D. Chen, Y. Yu, Y. Wang, P. Huang, and F. Weng, J. Phys. Chem. C 113, 6406 (2009).
    [CrossRef]
  7. D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, J. Appl. Phys. 104, 116105/1 (2008).
  8. Y. Pan, M. Wu, and Q. Su, Mater. Sci. Eng., B 106, 251 (2004).
    [CrossRef]
  9. X. Liu, S. Ye, Y. Qiao, G. Dong, B. Zhu, D. Chen, G. Lakshminarayana, and J. Qiu, Appl. Phys. B 96, 51 (2009).
    [CrossRef]
  10. J. Liao, Y. Lin, Y. Chen, Z. Luo, E. Ma, X. Gong, Q. Tan, and Y. Huang, J. Opt. Soc. Am. B 23, 2572 (2006).
    [CrossRef]

2009 (3)

B. M. van der Ende, L. Aarts, and A. Meijerink, Adv. Mater 21, 3073 (2009).
[CrossRef]

D. Chen, Y. Yu, Y. Wang, P. Huang, and F. Weng, J. Phys. Chem. C 113, 6406 (2009).
[CrossRef]

X. Liu, S. Ye, Y. Qiao, G. Dong, B. Zhu, D. Chen, G. Lakshminarayana, and J. Qiu, Appl. Phys. B 96, 51 (2009).
[CrossRef]

2008 (2)

D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, J. Appl. Phys. 104, 116105/1 (2008).

S. Ye, B. Zhu, J. Chen, J. Luo, and J. Qiu, Appl. Phys. Lett. 92, 141112/1 (2008).

2007 (1)

Q. Zhang, Y. Pan, and Z. Jiang, Appl. Phys. Lett. 91, 051903/1 (2007).

2006 (1)

2005 (1)

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, Phys. Rev. B 71, 014119 (2005).
[CrossRef]

2004 (1)

Y. Pan, M. Wu, and Q. Su, Mater. Sci. Eng., B 106, 251 (2004).
[CrossRef]

2002 (1)

T. Trupke, M. A. Green, and P. Wurfel, J. Appl. Phys. 92, 1668 (2002).
[CrossRef]

Aarts, L.

B. M. van der Ende, L. Aarts, and A. Meijerink, Adv. Mater 21, 3073 (2009).
[CrossRef]

Chen, D.

D. Chen, Y. Yu, Y. Wang, P. Huang, and F. Weng, J. Phys. Chem. C 113, 6406 (2009).
[CrossRef]

X. Liu, S. Ye, Y. Qiao, G. Dong, B. Zhu, D. Chen, G. Lakshminarayana, and J. Qiu, Appl. Phys. B 96, 51 (2009).
[CrossRef]

D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, J. Appl. Phys. 104, 116105/1 (2008).

Chen, J.

S. Ye, B. Zhu, J. Chen, J. Luo, and J. Qiu, Appl. Phys. Lett. 92, 141112/1 (2008).

Chen, Y.

Den Hertog, M. I.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, Phys. Rev. B 71, 014119 (2005).
[CrossRef]

Dong, G.

X. Liu, S. Ye, Y. Qiao, G. Dong, B. Zhu, D. Chen, G. Lakshminarayana, and J. Qiu, Appl. Phys. B 96, 51 (2009).
[CrossRef]

Gong, X.

Green, M. A.

T. Trupke, M. A. Green, and P. Wurfel, J. Appl. Phys. 92, 1668 (2002).
[CrossRef]

Huang, P.

D. Chen, Y. Yu, Y. Wang, P. Huang, and F. Weng, J. Phys. Chem. C 113, 6406 (2009).
[CrossRef]

D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, J. Appl. Phys. 104, 116105/1 (2008).

Huang, Y.

Jiang, Z.

Q. Zhang, Y. Pan, and Z. Jiang, Appl. Phys. Lett. 91, 051903/1 (2007).

Kox, M. H. F.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, Phys. Rev. B 71, 014119 (2005).
[CrossRef]

Lakshminarayana, G.

X. Liu, S. Ye, Y. Qiao, G. Dong, B. Zhu, D. Chen, G. Lakshminarayana, and J. Qiu, Appl. Phys. B 96, 51 (2009).
[CrossRef]

Liao, J.

Lin, Y.

Liu, X.

X. Liu, S. Ye, Y. Qiao, G. Dong, B. Zhu, D. Chen, G. Lakshminarayana, and J. Qiu, Appl. Phys. B 96, 51 (2009).
[CrossRef]

Luo, J.

S. Ye, B. Zhu, J. Chen, J. Luo, and J. Qiu, Appl. Phys. Lett. 92, 141112/1 (2008).

Luo, Z.

Ma, E.

Meijerink, A.

B. M. van der Ende, L. Aarts, and A. Meijerink, Adv. Mater 21, 3073 (2009).
[CrossRef]

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, Phys. Rev. B 71, 014119 (2005).
[CrossRef]

Pan, Y.

Q. Zhang, Y. Pan, and Z. Jiang, Appl. Phys. Lett. 91, 051903/1 (2007).

Y. Pan, M. Wu, and Q. Su, Mater. Sci. Eng., B 106, 251 (2004).
[CrossRef]

Qiao, Y.

X. Liu, S. Ye, Y. Qiao, G. Dong, B. Zhu, D. Chen, G. Lakshminarayana, and J. Qiu, Appl. Phys. B 96, 51 (2009).
[CrossRef]

Qiu, J.

X. Liu, S. Ye, Y. Qiao, G. Dong, B. Zhu, D. Chen, G. Lakshminarayana, and J. Qiu, Appl. Phys. B 96, 51 (2009).
[CrossRef]

S. Ye, B. Zhu, J. Chen, J. Luo, and J. Qiu, Appl. Phys. Lett. 92, 141112/1 (2008).

Su, Q.

Y. Pan, M. Wu, and Q. Su, Mater. Sci. Eng., B 106, 251 (2004).
[CrossRef]

Tan, Q.

Trupke, T.

T. Trupke, M. A. Green, and P. Wurfel, J. Appl. Phys. 92, 1668 (2002).
[CrossRef]

van der Eerden, J. P. J. M.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, Phys. Rev. B 71, 014119 (2005).
[CrossRef]

van der Ende, B. M.

B. M. van der Ende, L. Aarts, and A. Meijerink, Adv. Mater 21, 3073 (2009).
[CrossRef]

Vergeer, P.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, Phys. Rev. B 71, 014119 (2005).
[CrossRef]

Vlugt, T. J. H.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, Phys. Rev. B 71, 014119 (2005).
[CrossRef]

Wang, Y.

D. Chen, Y. Yu, Y. Wang, P. Huang, and F. Weng, J. Phys. Chem. C 113, 6406 (2009).
[CrossRef]

D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, J. Appl. Phys. 104, 116105/1 (2008).

Weng, F.

D. Chen, Y. Yu, Y. Wang, P. Huang, and F. Weng, J. Phys. Chem. C 113, 6406 (2009).
[CrossRef]

D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, J. Appl. Phys. 104, 116105/1 (2008).

Wu, M.

Y. Pan, M. Wu, and Q. Su, Mater. Sci. Eng., B 106, 251 (2004).
[CrossRef]

Wurfel, P.

T. Trupke, M. A. Green, and P. Wurfel, J. Appl. Phys. 92, 1668 (2002).
[CrossRef]

Ye, S.

X. Liu, S. Ye, Y. Qiao, G. Dong, B. Zhu, D. Chen, G. Lakshminarayana, and J. Qiu, Appl. Phys. B 96, 51 (2009).
[CrossRef]

S. Ye, B. Zhu, J. Chen, J. Luo, and J. Qiu, Appl. Phys. Lett. 92, 141112/1 (2008).

Yu, Y.

D. Chen, Y. Yu, Y. Wang, P. Huang, and F. Weng, J. Phys. Chem. C 113, 6406 (2009).
[CrossRef]

D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, J. Appl. Phys. 104, 116105/1 (2008).

Zhang, Q.

Q. Zhang, Y. Pan, and Z. Jiang, Appl. Phys. Lett. 91, 051903/1 (2007).

Zhu, B.

X. Liu, S. Ye, Y. Qiao, G. Dong, B. Zhu, D. Chen, G. Lakshminarayana, and J. Qiu, Appl. Phys. B 96, 51 (2009).
[CrossRef]

S. Ye, B. Zhu, J. Chen, J. Luo, and J. Qiu, Appl. Phys. Lett. 92, 141112/1 (2008).

Adv. Mater (1)

B. M. van der Ende, L. Aarts, and A. Meijerink, Adv. Mater 21, 3073 (2009).
[CrossRef]

Appl. Phys. B (1)

X. Liu, S. Ye, Y. Qiao, G. Dong, B. Zhu, D. Chen, G. Lakshminarayana, and J. Qiu, Appl. Phys. B 96, 51 (2009).
[CrossRef]

Appl. Phys. Lett. (2)

S. Ye, B. Zhu, J. Chen, J. Luo, and J. Qiu, Appl. Phys. Lett. 92, 141112/1 (2008).

Q. Zhang, Y. Pan, and Z. Jiang, Appl. Phys. Lett. 91, 051903/1 (2007).

J. Appl. Phys. (2)

T. Trupke, M. A. Green, and P. Wurfel, J. Appl. Phys. 92, 1668 (2002).
[CrossRef]

D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, J. Appl. Phys. 104, 116105/1 (2008).

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

D. Chen, Y. Yu, Y. Wang, P. Huang, and F. Weng, J. Phys. Chem. C 113, 6406 (2009).
[CrossRef]

Mater. Sci. Eng., B (1)

Y. Pan, M. Wu, and Q. Su, Mater. Sci. Eng., B 106, 251 (2004).
[CrossRef]

Phys. Rev. B (1)

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, Phys. Rev. B 71, 014119 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Energy-level diagram illustrating the probable cooperative energy-transfer process from a 5 d ( A 1 g 2 ) level of Ce 3 + to a F 5 2 2 level of Yb 3 + . The solid arrows stand for the excitation and the emission processes, and the dashed (thin) and dotted (thick) arrows represent nonradiative transition or energy-transfer processes.

Fig. 2
Fig. 2

(a) Representative excitation spectra for YAG : Ce 3 + , Yb 3 + ( Y 2.91 3 x Ce 0.09 Yb 3 x Al 5 O 12 , x = 0.1 ) monitoring the emission of Ce 3 + at 530 nm , and the emission of Yb 3 + at 1030 nm , respectively. For comparison, we also give the excitation spectra of Yb 3 + of DC materials activated with ion pairs of Yb 3 + - RE 3 + ( RE = Tb , Tm, and Pr; the host is a borogermanate glass), and Yb 3 + - Ce 3 + (the host is a borate glass, data adopted from [9]). The AM 1.5 G solar spectrum in this spectral region is shown in the background as a reference. (b) Concentration-dependent emission spectra of YAG : Ce 3 + , Yb 3 + ( x = 0 0.5 ) , and YAG : Yb 3 + ( Y 2.7 Yb 0.3 Al 5 O 12 ) under the excitation at 470 nm .

Fig. 3
Fig. 3

(a) Decay curves recorded at 530 nm with the excitation at 470 nm for the YAG: Ce 3 + , Yb 3 + ( x = 0 0.5 ) and (b) the derived average lifetimes and the calculated energy-transfer efficiencies for specimens with different Yb 3 + doping concentrations.

Fig. 4
Fig. 4

Temperature-dependent emission spectra of Ce 3 + (excited at 470 nm ) measured from 14 K to 370 K ( Yb 3 + content: x = 0.1 ). The emission spectrum at 14 K is decomposed into two Gaussian peaks centered at 523 nm and 572 nm (dotted curves). The insert plots the integrated emission intensity, and the relative contribution of the NIR emission ( I NIR ( I VIS + I NIR ) ) as a function of temperature

Metrics