Abstract

We design an integrated optoelectronic device based on the whispering-gallery modes of a sapphire microsphere integrated with a liquid-crystal tuning medium to produce a narrowband, electrically tunable, channel-dropping filter. The sapphire microsphere is glued over a diffused waveguide in a glass substrate. At the base of the microsphere, a small volume of liquid crystal is infiltrated. We numerically evaluate the performance of the device and demonstrate a voltage tuning of the narrowband resonances.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Lord Rayleigh, Scientific Papers (Cambridge U. Press), Vol. 5, pp. 617-620 (1912).
  2. M. Cai, O. Painter, and K. J. Vahala, Opt. Lett. 25, 1430 (2000).
    [CrossRef]
  3. T. Bilici, S. Isci, A. Kurt, and A. Serpengüzel, IEEE Photon. Technol. Lett. 16, 476 (2004).
    [CrossRef]
  4. H. C. Tapalian, J. P. Laine, and P. A Lane, IEEE Photon. Technol. Lett. 14, 1118 (2002).
    [CrossRef]
  5. R.K.Chang and A.J.Campillo, eds., Optical Processes in Microcavities (World Scientific, 1996).
    [CrossRef]
  6. S. M. Spillane, J. T. Kippenberg, and K. J. Vahala, Nature 415, 621 (2002).
    [CrossRef] [PubMed]
  7. M. Cai, G. Hunziker, and K. Vahala, IEEE Photon. Technol. Lett. 11, 686 (1999).
    [CrossRef]
  8. A. Serpengüzel, S. Arnold, and G. Griffel, Opt. Lett. 20, 654 (1995).
    [CrossRef] [PubMed]
  9. Y. Panitchob, G. S. Murugan, M. N. Zervas, P. Horak, S. Berneschi, S. Pelli, G. N. Conti, and J. S. Wilkinson, Opt. Express 16, 11066 (2008).
    [CrossRef] [PubMed]
  10. D. Armani, B. Min, A. Martin, and K. J. Vahala, Appl. Phys. Lett. 85, 5438 (2004).
    [CrossRef]
  11. A. d'Alessandro, D. Donisi, R. Asquini, R. Beccherelli, L. De Sio, and C. Umeton, Opt. Express 16, 9254 (2008).
    [CrossRef] [PubMed]
  12. D. C. Zografopoulos, E. E. Kriezis, B. Bellini, and R. Beccherelli, Opt. Express 15, 1832 (2007).
    [CrossRef] [PubMed]
  13. A. C. Tasolamprou, B. Bellini, D. C. Zografopoulos, E. E. Kriezis, and R. Beccherelli, J. Eur. Opt. Soc. Rapid Publ. 4, 09017 (2009).
    [CrossRef]
  14. B. Bellini, A. d'Alessandro, and R. Beccherelli, Opt. Mater. 29, 1019 (2007).
    [CrossRef]

2009

A. C. Tasolamprou, B. Bellini, D. C. Zografopoulos, E. E. Kriezis, and R. Beccherelli, J. Eur. Opt. Soc. Rapid Publ. 4, 09017 (2009).
[CrossRef]

2008

2007

2004

D. Armani, B. Min, A. Martin, and K. J. Vahala, Appl. Phys. Lett. 85, 5438 (2004).
[CrossRef]

T. Bilici, S. Isci, A. Kurt, and A. Serpengüzel, IEEE Photon. Technol. Lett. 16, 476 (2004).
[CrossRef]

2002

H. C. Tapalian, J. P. Laine, and P. A Lane, IEEE Photon. Technol. Lett. 14, 1118 (2002).
[CrossRef]

S. M. Spillane, J. T. Kippenberg, and K. J. Vahala, Nature 415, 621 (2002).
[CrossRef] [PubMed]

2000

1999

M. Cai, G. Hunziker, and K. Vahala, IEEE Photon. Technol. Lett. 11, 686 (1999).
[CrossRef]

1995

Armani, D.

D. Armani, B. Min, A. Martin, and K. J. Vahala, Appl. Phys. Lett. 85, 5438 (2004).
[CrossRef]

Arnold, S.

Asquini, R.

Beccherelli, R.

A. C. Tasolamprou, B. Bellini, D. C. Zografopoulos, E. E. Kriezis, and R. Beccherelli, J. Eur. Opt. Soc. Rapid Publ. 4, 09017 (2009).
[CrossRef]

A. d'Alessandro, D. Donisi, R. Asquini, R. Beccherelli, L. De Sio, and C. Umeton, Opt. Express 16, 9254 (2008).
[CrossRef] [PubMed]

D. C. Zografopoulos, E. E. Kriezis, B. Bellini, and R. Beccherelli, Opt. Express 15, 1832 (2007).
[CrossRef] [PubMed]

B. Bellini, A. d'Alessandro, and R. Beccherelli, Opt. Mater. 29, 1019 (2007).
[CrossRef]

Bellini, B.

A. C. Tasolamprou, B. Bellini, D. C. Zografopoulos, E. E. Kriezis, and R. Beccherelli, J. Eur. Opt. Soc. Rapid Publ. 4, 09017 (2009).
[CrossRef]

D. C. Zografopoulos, E. E. Kriezis, B. Bellini, and R. Beccherelli, Opt. Express 15, 1832 (2007).
[CrossRef] [PubMed]

B. Bellini, A. d'Alessandro, and R. Beccherelli, Opt. Mater. 29, 1019 (2007).
[CrossRef]

Berneschi, S.

Bilici, T.

T. Bilici, S. Isci, A. Kurt, and A. Serpengüzel, IEEE Photon. Technol. Lett. 16, 476 (2004).
[CrossRef]

Cai, M.

M. Cai, O. Painter, and K. J. Vahala, Opt. Lett. 25, 1430 (2000).
[CrossRef]

M. Cai, G. Hunziker, and K. Vahala, IEEE Photon. Technol. Lett. 11, 686 (1999).
[CrossRef]

Conti, G. N.

d'Alessandro, A.

De Sio, L.

Donisi, D.

Griffel, G.

Horak, P.

Hunziker, G.

M. Cai, G. Hunziker, and K. Vahala, IEEE Photon. Technol. Lett. 11, 686 (1999).
[CrossRef]

Isci, S.

T. Bilici, S. Isci, A. Kurt, and A. Serpengüzel, IEEE Photon. Technol. Lett. 16, 476 (2004).
[CrossRef]

Kippenberg, J. T.

S. M. Spillane, J. T. Kippenberg, and K. J. Vahala, Nature 415, 621 (2002).
[CrossRef] [PubMed]

Kriezis, E. E.

A. C. Tasolamprou, B. Bellini, D. C. Zografopoulos, E. E. Kriezis, and R. Beccherelli, J. Eur. Opt. Soc. Rapid Publ. 4, 09017 (2009).
[CrossRef]

D. C. Zografopoulos, E. E. Kriezis, B. Bellini, and R. Beccherelli, Opt. Express 15, 1832 (2007).
[CrossRef] [PubMed]

Kurt, A.

T. Bilici, S. Isci, A. Kurt, and A. Serpengüzel, IEEE Photon. Technol. Lett. 16, 476 (2004).
[CrossRef]

Laine, J. P.

H. C. Tapalian, J. P. Laine, and P. A Lane, IEEE Photon. Technol. Lett. 14, 1118 (2002).
[CrossRef]

Lane, P. A

H. C. Tapalian, J. P. Laine, and P. A Lane, IEEE Photon. Technol. Lett. 14, 1118 (2002).
[CrossRef]

Martin, A.

D. Armani, B. Min, A. Martin, and K. J. Vahala, Appl. Phys. Lett. 85, 5438 (2004).
[CrossRef]

Min, B.

D. Armani, B. Min, A. Martin, and K. J. Vahala, Appl. Phys. Lett. 85, 5438 (2004).
[CrossRef]

Murugan, G. S.

Painter, O.

Panitchob, Y.

Pelli, S.

Rayleigh, Lord

Lord Rayleigh, Scientific Papers (Cambridge U. Press), Vol. 5, pp. 617-620 (1912).

Serpengüzel, A.

T. Bilici, S. Isci, A. Kurt, and A. Serpengüzel, IEEE Photon. Technol. Lett. 16, 476 (2004).
[CrossRef]

A. Serpengüzel, S. Arnold, and G. Griffel, Opt. Lett. 20, 654 (1995).
[CrossRef] [PubMed]

Spillane, S. M.

S. M. Spillane, J. T. Kippenberg, and K. J. Vahala, Nature 415, 621 (2002).
[CrossRef] [PubMed]

Tapalian, H. C.

H. C. Tapalian, J. P. Laine, and P. A Lane, IEEE Photon. Technol. Lett. 14, 1118 (2002).
[CrossRef]

Tasolamprou, A. C.

A. C. Tasolamprou, B. Bellini, D. C. Zografopoulos, E. E. Kriezis, and R. Beccherelli, J. Eur. Opt. Soc. Rapid Publ. 4, 09017 (2009).
[CrossRef]

Umeton, C.

Vahala, K.

M. Cai, G. Hunziker, and K. Vahala, IEEE Photon. Technol. Lett. 11, 686 (1999).
[CrossRef]

Vahala, K. J.

D. Armani, B. Min, A. Martin, and K. J. Vahala, Appl. Phys. Lett. 85, 5438 (2004).
[CrossRef]

S. M. Spillane, J. T. Kippenberg, and K. J. Vahala, Nature 415, 621 (2002).
[CrossRef] [PubMed]

M. Cai, O. Painter, and K. J. Vahala, Opt. Lett. 25, 1430 (2000).
[CrossRef]

Wilkinson, J. S.

Zervas, M. N.

Zografopoulos, D. C.

A. C. Tasolamprou, B. Bellini, D. C. Zografopoulos, E. E. Kriezis, and R. Beccherelli, J. Eur. Opt. Soc. Rapid Publ. 4, 09017 (2009).
[CrossRef]

D. C. Zografopoulos, E. E. Kriezis, B. Bellini, and R. Beccherelli, Opt. Express 15, 1832 (2007).
[CrossRef] [PubMed]

Appl. Phys. Lett.

D. Armani, B. Min, A. Martin, and K. J. Vahala, Appl. Phys. Lett. 85, 5438 (2004).
[CrossRef]

IEEE Photon. Technol. Lett.

T. Bilici, S. Isci, A. Kurt, and A. Serpengüzel, IEEE Photon. Technol. Lett. 16, 476 (2004).
[CrossRef]

H. C. Tapalian, J. P. Laine, and P. A Lane, IEEE Photon. Technol. Lett. 14, 1118 (2002).
[CrossRef]

M. Cai, G. Hunziker, and K. Vahala, IEEE Photon. Technol. Lett. 11, 686 (1999).
[CrossRef]

J. Eur. Opt. Soc. Rapid Publ.

A. C. Tasolamprou, B. Bellini, D. C. Zografopoulos, E. E. Kriezis, and R. Beccherelli, J. Eur. Opt. Soc. Rapid Publ. 4, 09017 (2009).
[CrossRef]

Nature

S. M. Spillane, J. T. Kippenberg, and K. J. Vahala, Nature 415, 621 (2002).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Opt. Mater.

B. Bellini, A. d'Alessandro, and R. Beccherelli, Opt. Mater. 29, 1019 (2007).
[CrossRef]

Other

Lord Rayleigh, Scientific Papers (Cambridge U. Press), Vol. 5, pp. 617-620 (1912).

R.K.Chang and A.J.Campillo, eds., Optical Processes in Microcavities (World Scientific, 1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic view of the proposed device showing the molecular director n and its decomposition into tilt and twist angles.

Fig. 2
Fig. 2

Refractive index n TE (twist) profile calculated for the liquid crystal in (a) ground state, (b) 6 V , (c) 8.5 V , and (d) saturating voltage switching ( 11 V ) . In the linear gray scale, black and white represent minimum (1.5) and maximum (1.689) refractive index value for a TE-polarized wave, respectively.

Fig. 3
Fig. 3

Computed normalized optical intensity in the microsphere for (a) off-resonance and (b) on-resonance cases. In the linear gray scale, black and white represents zero and maximum intensity, respectively.

Fig. 4
Fig. 4

Computed normalized transmission as a function of the applied voltage: thin black line, ground state ( 0 V ) ; red thick line at saturation voltage ( 11 V ) . Single and double arrows show redshift and the free spectral range (FSR), respectively.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

r = 2 [ d ( h s ) + h s ] h 2 d 2 ,
n TE ( twist ) = n n n 2 cos 2 ( twist ) + n 2 sin 2 ( twist ) ,
F = F elastic 1 2 ϵ 0 ϵ | E | 2 + 1 2 ϵ 0 Δ ϵ ( E n ) 2 d v ,
F elastic = { 1 2 K 11 ( n ) 2 + 1 2 K 22 [ n ( × n ) ] 2 + 1 2 K 33 [ n × ( × n ) ] 2 } d v .

Metrics