Abstract

We theoretically demonstrate an improved two-step-heterodyne-based, millimeter-wave, radio-over-fiber system. With the millimeter-wave mixer and a fiber Bragg grating located in the base station, two-step heterodyne is achieved. The proposed scheme has the merit of good system performance and high suppression of unwanted frequency tones, which is verified by numerical simulations.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Kuri and K. Kitayama, J. Lightwave Technol. 21, 3167 (2003).
    [CrossRef]
  2. U. Gliese, S. Nrskov, and T. N. Nielsen, IEEE Trans. Microwave Theory Tech. 44, 1716 (1996).
    [CrossRef]
  3. H. Sotobayashi and K. Kitayama, J. Lightwave Technol. 17, 2488 (1999).
    [CrossRef]
  4. U. Gliese, T. N. Nielsen, S. Nrskov, and K. E. Stubkjaer, IEEE Trans. Microwave Theory Tech. 46, 458 (1998).
    [CrossRef]
  5. J. Chen, C.-T. Lin, P. T. Shih, W. Jiang, Jr., S.-P. Dai, Y.-M. Lin, P.-C. Peng, and S. Chi, J. Opt. Netw. 8, 188 (2009).
    [CrossRef]
  6. T. Tomohiro and S. Naoya, in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2004), paper FE1.
  7. Y. Jianjun, J. Zhensheng, L. Yi, Y. Su, C. Gee-Kung, and W. Ting, IEEE Photon. Technol. Lett. 18, 265 (2006).
    [CrossRef]
  8. K. Y. Lau and J. Park, Ultra-High Frequency Linear Fiber Optic Systems (Springer, 2008), pp. 155-166.
  9. H. Ogawa, D. Polifko, and S. Banda, IEEE Trans. Microwave Theory Tech. 40, 2285 (1992).
    [CrossRef]
  10. G. Meslener, IEEE J. Quantum Electron. 20, 1208 (1984).
    [CrossRef]

2009 (1)

2006 (1)

Y. Jianjun, J. Zhensheng, L. Yi, Y. Su, C. Gee-Kung, and W. Ting, IEEE Photon. Technol. Lett. 18, 265 (2006).
[CrossRef]

2003 (1)

1999 (1)

1998 (1)

U. Gliese, T. N. Nielsen, S. Nrskov, and K. E. Stubkjaer, IEEE Trans. Microwave Theory Tech. 46, 458 (1998).
[CrossRef]

1996 (1)

U. Gliese, S. Nrskov, and T. N. Nielsen, IEEE Trans. Microwave Theory Tech. 44, 1716 (1996).
[CrossRef]

1992 (1)

H. Ogawa, D. Polifko, and S. Banda, IEEE Trans. Microwave Theory Tech. 40, 2285 (1992).
[CrossRef]

1984 (1)

G. Meslener, IEEE J. Quantum Electron. 20, 1208 (1984).
[CrossRef]

Banda, S.

H. Ogawa, D. Polifko, and S. Banda, IEEE Trans. Microwave Theory Tech. 40, 2285 (1992).
[CrossRef]

Chen, J.

Chi, S.

Dai, S.-P.

Gee-Kung, C.

Y. Jianjun, J. Zhensheng, L. Yi, Y. Su, C. Gee-Kung, and W. Ting, IEEE Photon. Technol. Lett. 18, 265 (2006).
[CrossRef]

Gliese, U.

U. Gliese, T. N. Nielsen, S. Nrskov, and K. E. Stubkjaer, IEEE Trans. Microwave Theory Tech. 46, 458 (1998).
[CrossRef]

U. Gliese, S. Nrskov, and T. N. Nielsen, IEEE Trans. Microwave Theory Tech. 44, 1716 (1996).
[CrossRef]

Jiang, W.

Jianjun, Y.

Y. Jianjun, J. Zhensheng, L. Yi, Y. Su, C. Gee-Kung, and W. Ting, IEEE Photon. Technol. Lett. 18, 265 (2006).
[CrossRef]

Kitayama, K.

Kuri, T.

Lau, K. Y.

K. Y. Lau and J. Park, Ultra-High Frequency Linear Fiber Optic Systems (Springer, 2008), pp. 155-166.

Lin, C.-T.

Lin, Y.-M.

Meslener, G.

G. Meslener, IEEE J. Quantum Electron. 20, 1208 (1984).
[CrossRef]

Naoya, S.

T. Tomohiro and S. Naoya, in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2004), paper FE1.

Nielsen, T. N.

U. Gliese, T. N. Nielsen, S. Nrskov, and K. E. Stubkjaer, IEEE Trans. Microwave Theory Tech. 46, 458 (1998).
[CrossRef]

U. Gliese, S. Nrskov, and T. N. Nielsen, IEEE Trans. Microwave Theory Tech. 44, 1716 (1996).
[CrossRef]

Nrskov, S.

U. Gliese, T. N. Nielsen, S. Nrskov, and K. E. Stubkjaer, IEEE Trans. Microwave Theory Tech. 46, 458 (1998).
[CrossRef]

U. Gliese, S. Nrskov, and T. N. Nielsen, IEEE Trans. Microwave Theory Tech. 44, 1716 (1996).
[CrossRef]

Ogawa, H.

H. Ogawa, D. Polifko, and S. Banda, IEEE Trans. Microwave Theory Tech. 40, 2285 (1992).
[CrossRef]

Park, J.

K. Y. Lau and J. Park, Ultra-High Frequency Linear Fiber Optic Systems (Springer, 2008), pp. 155-166.

Peng, P.-C.

Polifko, D.

H. Ogawa, D. Polifko, and S. Banda, IEEE Trans. Microwave Theory Tech. 40, 2285 (1992).
[CrossRef]

Shih, P. T.

Sotobayashi, H.

Stubkjaer, K. E.

U. Gliese, T. N. Nielsen, S. Nrskov, and K. E. Stubkjaer, IEEE Trans. Microwave Theory Tech. 46, 458 (1998).
[CrossRef]

Su, Y.

Y. Jianjun, J. Zhensheng, L. Yi, Y. Su, C. Gee-Kung, and W. Ting, IEEE Photon. Technol. Lett. 18, 265 (2006).
[CrossRef]

Ting, W.

Y. Jianjun, J. Zhensheng, L. Yi, Y. Su, C. Gee-Kung, and W. Ting, IEEE Photon. Technol. Lett. 18, 265 (2006).
[CrossRef]

Tomohiro, T.

T. Tomohiro and S. Naoya, in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2004), paper FE1.

Yi, L.

Y. Jianjun, J. Zhensheng, L. Yi, Y. Su, C. Gee-Kung, and W. Ting, IEEE Photon. Technol. Lett. 18, 265 (2006).
[CrossRef]

Zhensheng, J.

Y. Jianjun, J. Zhensheng, L. Yi, Y. Su, C. Gee-Kung, and W. Ting, IEEE Photon. Technol. Lett. 18, 265 (2006).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. Meslener, IEEE J. Quantum Electron. 20, 1208 (1984).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y. Jianjun, J. Zhensheng, L. Yi, Y. Su, C. Gee-Kung, and W. Ting, IEEE Photon. Technol. Lett. 18, 265 (2006).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (3)

H. Ogawa, D. Polifko, and S. Banda, IEEE Trans. Microwave Theory Tech. 40, 2285 (1992).
[CrossRef]

U. Gliese, S. Nrskov, and T. N. Nielsen, IEEE Trans. Microwave Theory Tech. 44, 1716 (1996).
[CrossRef]

U. Gliese, T. N. Nielsen, S. Nrskov, and K. E. Stubkjaer, IEEE Trans. Microwave Theory Tech. 46, 458 (1998).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Netw. (1)

Other (2)

T. Tomohiro and S. Naoya, in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2004), paper FE1.

K. Y. Lau and J. Park, Ultra-High Frequency Linear Fiber Optic Systems (Springer, 2008), pp. 155-166.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic setup of the improved two-step-heterodyne-based RoF system.

Fig. 2
Fig. 2

Spectrum of millimeter-wave signals: (a) from OSA; (b) from ESA.

Fig. 3
Fig. 3

BER versus the linewidth of tunable laser ( n 0 = 1 e - 19 W Hz ) .

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

E in ( t ) = E 0 exp [ j 2 π f 1 t + j φ 1 ( t ) ] + E 0 exp [ j 2 π f 2 t + j φ 2 ( t ) ] ,
E out ( t ) = E 0 n = 1 ( 1 ) n J 2 n 1 ( m ) { exp [ j 2 π ( f 1 + ( 2 n 1 ) f ) t + j φ 1 ( t ) ] + exp [ j 2 π ( f 1 ( 2 n 1 ) f ) t + j φ 1 ( t ) ] + exp [ j 2 π ( f 2 + ( 2 n 1 ) f ) t + j φ 2 ( t ) ] + exp [ j 2 π ( f 2 ( 2 n 1 ) f ) t + j φ 2 ( t ) ] } ,
E 1 ( t ) J 1 ( m ) E 0 { exp [ j 2 π ( f 1 + f ) ( t τ 3 ) + j φ 1 ( t τ 3 ) ] + exp [ j 2 π ( f 1 f ) ( t τ 1 ) + j φ 1 ( t τ 1 ) ] + exp [ j 2 π ( f 2 + f ) ( t τ 4 ) + j φ 2 ( t τ 4 ) ] + exp [ j 2 π ( f 2 f ) ( t τ 2 ) + j φ 2 ( t τ 2 ) ] } ,
E 2 ( t ) = J 1 ( m ) E 0 { exp [ j 2 π ( f 1 f ) ( t τ 1 ) + j φ 1 ( t τ 1 ) ] + exp [ j 2 π ( f 2 + f ) ( t τ 4 ) + j φ 2 ( t τ 4 ) ] } ,
E 3 ( t ) = J 1 ( m ) E 0 { exp [ j 2 π ( f 1 + f ) ( t τ 3 ) + j φ 1 ( t τ 3 ) ] + exp [ j 2 π ( f 2 f ) ( t τ 2 ) + j φ 2 ( t τ 2 ) ] } .
i 1 = i dc + R 1 J 1 2 ( m ) E 0 2 cos [ 2 π ( f 2 f 1 + 2 f ) t + θ + φ 2 ( t τ 4 ) φ 1 ( t τ 1 ) ] ,
i 2 = i dc + R 2 J 1 2 ( m ) E 0 2 cos [ 2 π ( f 2 f 1 2 f ) t + θ + φ 2 ( t τ 2 ) φ 1 ( t τ 3 ) ] .
i 4 f 2 = R 1 R 2 J 1 4 ( m ) E 0 4 2 ( cos ( 2 π 4 f t ) E { cos [ φ 2 ( t τ 4 ) φ 2 ( t τ 2 ) + φ 1 ( t τ 3 ) φ 1 ( t τ 1 ) ] } sin ( 2 π 4 f t ) E { sin [ φ 2 ( t τ 4 ) φ 2 ( t τ 2 ) + φ 1 ( t τ 3 ) φ 1 ( t τ 1 ) ] } ) .
E { exp [ j φ ( t 1 ) j φ ( t 2 ) ] } = + 1 2 π δ ( t 1 t 2 ) exp ( x 2 4 π δ ( t 1 t 2 ) ) exp ( j x ) d x = exp ( 1 2 × 2 π δ | t 1 t 2 | ) = exp ( π δ | t 1 t 2 | ) .
i 4 f 2 = R 1 R 2 J 1 4 ( m ) E 0 4 2 cos ( 2 π 4 f t ) exp [ 2 π δ 2 ( z c D f f 2 2 ) 2 π δ 1 ( z c D f f 1 2 ) ] ,
P e = 1 2 erfc ( P 4 f 4 n 0 B ) ,

Metrics