Abstract

We describe a wide-field interferometric surface-plasmon microscope capable of submicrometer resolution. The system is a speckle-illuminated Linnik interferometer, which behaves as a wide-field analog of a scanning heterodyne interferometer. The presented images demonstrate contrast reversals at different defocus while retaining submicrometer lateral resolution. The contrast mechanisms are discussed as well as the instrumental requirements of the technique.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Zhang, M. C. Pitter, S. G. Liu, C. W. See, and M. G. Somekh, Appl. Opt. 45, 7977 (2006).
    [CrossRef] [PubMed]
  2. H. Kano, S. Mizuguchi, and S. Kawata, J. Opt. Soc. Am. B 15, 1381 (1998).
    [CrossRef]
  3. G. Stabler, M. G. Somekh, and C. W. See, J. Microsc. 214, 328 (2004).
    [CrossRef] [PubMed]
  4. B. Huang, F. Yu, and R. N. Zare, Anal. Chem. 79, 2979 (2007).
    [CrossRef] [PubMed]
  5. R. Vander and S. G. Lipson, Opt. Lett. 34, 37 (2009).
    [CrossRef]
  6. M. G. Somekh, S. Liu, T. S. Velinov, and C. W. See, Appl. Opt. 39, 6279 (2000).
    [CrossRef]
  7. L. Berguiga, S. Zhang, and F. Argoul, Opt. Lett. 32, 509 (2007).
    [CrossRef] [PubMed]
  8. M. G. Somekh, C. W. See, and J. Goh, Opt. Commun. 174, 75 (2000).
    [CrossRef]
  9. R. J. Smith, M. G. Somekh, S. D. Sharples, M. C. Pitter, I. Harrison, and C. Rossignol, Meas. Sci. Technol. 19, 055301 (2008).
    [CrossRef]

2009 (1)

2008 (1)

R. J. Smith, M. G. Somekh, S. D. Sharples, M. C. Pitter, I. Harrison, and C. Rossignol, Meas. Sci. Technol. 19, 055301 (2008).
[CrossRef]

2007 (2)

2006 (1)

2004 (1)

G. Stabler, M. G. Somekh, and C. W. See, J. Microsc. 214, 328 (2004).
[CrossRef] [PubMed]

2000 (2)

1998 (1)

Argoul, F.

Berguiga, L.

Goh, J.

M. G. Somekh, C. W. See, and J. Goh, Opt. Commun. 174, 75 (2000).
[CrossRef]

Harrison, I.

R. J. Smith, M. G. Somekh, S. D. Sharples, M. C. Pitter, I. Harrison, and C. Rossignol, Meas. Sci. Technol. 19, 055301 (2008).
[CrossRef]

Huang, B.

B. Huang, F. Yu, and R. N. Zare, Anal. Chem. 79, 2979 (2007).
[CrossRef] [PubMed]

Kano, H.

Kawata, S.

Lipson, S. G.

Liu, S.

Liu, S. G.

Mizuguchi, S.

Pitter, M. C.

R. J. Smith, M. G. Somekh, S. D. Sharples, M. C. Pitter, I. Harrison, and C. Rossignol, Meas. Sci. Technol. 19, 055301 (2008).
[CrossRef]

J. Zhang, M. C. Pitter, S. G. Liu, C. W. See, and M. G. Somekh, Appl. Opt. 45, 7977 (2006).
[CrossRef] [PubMed]

Rossignol, C.

R. J. Smith, M. G. Somekh, S. D. Sharples, M. C. Pitter, I. Harrison, and C. Rossignol, Meas. Sci. Technol. 19, 055301 (2008).
[CrossRef]

See, C. W.

Sharples, S. D.

R. J. Smith, M. G. Somekh, S. D. Sharples, M. C. Pitter, I. Harrison, and C. Rossignol, Meas. Sci. Technol. 19, 055301 (2008).
[CrossRef]

Smith, R. J.

R. J. Smith, M. G. Somekh, S. D. Sharples, M. C. Pitter, I. Harrison, and C. Rossignol, Meas. Sci. Technol. 19, 055301 (2008).
[CrossRef]

Somekh, M. G.

R. J. Smith, M. G. Somekh, S. D. Sharples, M. C. Pitter, I. Harrison, and C. Rossignol, Meas. Sci. Technol. 19, 055301 (2008).
[CrossRef]

J. Zhang, M. C. Pitter, S. G. Liu, C. W. See, and M. G. Somekh, Appl. Opt. 45, 7977 (2006).
[CrossRef] [PubMed]

G. Stabler, M. G. Somekh, and C. W. See, J. Microsc. 214, 328 (2004).
[CrossRef] [PubMed]

M. G. Somekh, S. Liu, T. S. Velinov, and C. W. See, Appl. Opt. 39, 6279 (2000).
[CrossRef]

M. G. Somekh, C. W. See, and J. Goh, Opt. Commun. 174, 75 (2000).
[CrossRef]

Stabler, G.

G. Stabler, M. G. Somekh, and C. W. See, J. Microsc. 214, 328 (2004).
[CrossRef] [PubMed]

Vander, R.

Velinov, T. S.

Yu, F.

B. Huang, F. Yu, and R. N. Zare, Anal. Chem. 79, 2979 (2007).
[CrossRef] [PubMed]

Zare, R. N.

B. Huang, F. Yu, and R. N. Zare, Anal. Chem. 79, 2979 (2007).
[CrossRef] [PubMed]

Zhang, J.

Zhang, S.

Anal. Chem. (1)

B. Huang, F. Yu, and R. N. Zare, Anal. Chem. 79, 2979 (2007).
[CrossRef] [PubMed]

Appl. Opt. (2)

J. Microsc. (1)

G. Stabler, M. G. Somekh, and C. W. See, J. Microsc. 214, 328 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (1)

R. J. Smith, M. G. Somekh, S. D. Sharples, M. C. Pitter, I. Harrison, and C. Rossignol, Meas. Sci. Technol. 19, 055301 (2008).
[CrossRef]

Opt. Commun. (1)

M. G. Somekh, C. W. See, and J. Goh, Opt. Commun. 174, 75 (2000).
[CrossRef]

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the speckle interferometer system used for wide-field SP imaging. Inset, principal ray paths in the SP scanning heterodyne inteferometer, which is equivalent to the effective ray paths corresponding to the SP propagation at each image point in the wide-field system.

Fig. 2
Fig. 2

V ( z ) curves for input polarization perpendicular to grating vector extracted from the image stack. Solid curve, on bare gold; dotted curve, on coated region.

Fig. 3
Fig. 3

Wide-field SP interference images; input polarization is perpendicular to the grating vector. The defocus relative to the nominal focus: (a) + 0.5 μ m , (b) 0.4 μ m , (c) 1.9 μ m . Bar corresponds to 10 μ m .

Fig. 4
Fig. 4

Image of bovine serum albumin (BSA) grating stamped on gold surface. Bar corresponds to 10 μ m , sample defocus to 1.8 μ m . Lower trace linescan is taken approximately halfway from the top of the image. Input polarization is parallel to grating vector.

Metrics