Abstract

We present the first experimental demonstration (to our knowledge) of long-distance unperturbed fundamental optical soliton transmission in conventional single-mode optical fiber. The virtual transparency in the fiber required for soliton transmission, over 15 complete periods, was achieved by using an ultralong Raman fiber laser amplification scheme. Optical soliton pulse duration, pulse bandwidth, and peak intensity are shown to remain constant along the transmission length. Frequency-resolved optical gating spectrograms and numerical simulations confirm the observed optical soliton dynamics.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. E. Zakharov and A. B. Shabbat, Sov. Phys. JETP 34, 62 (1972).
  2. N. J. Doran and K. J. Blow, IEEE J. Quantum Electron. 19, 1883 (1983).
    [CrossRef]
  3. K. Sumimura, T. Ohta, and N. Nishizawa, Opt. Lett. 33 24, 2892 (2008).
    [CrossRef] [PubMed]
  4. E. Desurvire, O. Leclerc, and O. Audouin, Opt. Lett. 21 14, 1026 (1996).
    [CrossRef] [PubMed]
  5. K. J. Blow and N. J. Doran, IEEE Photon. Technol. Lett. 3, 369 (1991).
    [CrossRef]
  6. N. J. Smith, N. J. Doran, W. Forysiak, and F. M. Knox, J. Lightwave Technol. 15, 1808 (1997).
    [CrossRef]
  7. D. J. Richardson, L. Dong, R. P. Chamberlin, A. D. Ellis, T. Widdowson, and W. A. Pender, Electron. Lett. 32, 4 (1996).
    [CrossRef]
  8. L. F. Mollenauer, Optical Ampliers and Their Applications, OSA Technical Digest Series (Optical Society of America, 2001), paper OMA2.
  9. J. D. Ania-Castanon, Opt. Express 12, 4372 (2004).
    [CrossRef] [PubMed]
  10. J. D. Ania-Castanon, V. Karalekas, P. Harper, and S. K. Turitsyn, Phys. Rev. Lett. 101, 123903 (2008).
    [CrossRef] [PubMed]
  11. J. M. Dudley, L. P. Barry, P. G. Bollond, J. D. Harvey, and R. Leonhardt, Opt. Fiber Technol. 4, 237 (1998).
    [CrossRef]

2008 (2)

J. D. Ania-Castanon, V. Karalekas, P. Harper, and S. K. Turitsyn, Phys. Rev. Lett. 101, 123903 (2008).
[CrossRef] [PubMed]

K. Sumimura, T. Ohta, and N. Nishizawa, Opt. Lett. 33 24, 2892 (2008).
[CrossRef] [PubMed]

2004 (1)

1998 (1)

J. M. Dudley, L. P. Barry, P. G. Bollond, J. D. Harvey, and R. Leonhardt, Opt. Fiber Technol. 4, 237 (1998).
[CrossRef]

1997 (1)

N. J. Smith, N. J. Doran, W. Forysiak, and F. M. Knox, J. Lightwave Technol. 15, 1808 (1997).
[CrossRef]

1996 (2)

D. J. Richardson, L. Dong, R. P. Chamberlin, A. D. Ellis, T. Widdowson, and W. A. Pender, Electron. Lett. 32, 4 (1996).
[CrossRef]

E. Desurvire, O. Leclerc, and O. Audouin, Opt. Lett. 21 14, 1026 (1996).
[CrossRef] [PubMed]

1991 (1)

K. J. Blow and N. J. Doran, IEEE Photon. Technol. Lett. 3, 369 (1991).
[CrossRef]

1983 (1)

N. J. Doran and K. J. Blow, IEEE J. Quantum Electron. 19, 1883 (1983).
[CrossRef]

1972 (1)

V. E. Zakharov and A. B. Shabbat, Sov. Phys. JETP 34, 62 (1972).

Ania-Castanon, J. D.

J. D. Ania-Castanon, V. Karalekas, P. Harper, and S. K. Turitsyn, Phys. Rev. Lett. 101, 123903 (2008).
[CrossRef] [PubMed]

J. D. Ania-Castanon, Opt. Express 12, 4372 (2004).
[CrossRef] [PubMed]

Audouin, O.

Barry, L. P.

J. M. Dudley, L. P. Barry, P. G. Bollond, J. D. Harvey, and R. Leonhardt, Opt. Fiber Technol. 4, 237 (1998).
[CrossRef]

Blow, K. J.

K. J. Blow and N. J. Doran, IEEE Photon. Technol. Lett. 3, 369 (1991).
[CrossRef]

N. J. Doran and K. J. Blow, IEEE J. Quantum Electron. 19, 1883 (1983).
[CrossRef]

Bollond, P. G.

J. M. Dudley, L. P. Barry, P. G. Bollond, J. D. Harvey, and R. Leonhardt, Opt. Fiber Technol. 4, 237 (1998).
[CrossRef]

Chamberlin, R. P.

D. J. Richardson, L. Dong, R. P. Chamberlin, A. D. Ellis, T. Widdowson, and W. A. Pender, Electron. Lett. 32, 4 (1996).
[CrossRef]

Desurvire, E.

Dong, L.

D. J. Richardson, L. Dong, R. P. Chamberlin, A. D. Ellis, T. Widdowson, and W. A. Pender, Electron. Lett. 32, 4 (1996).
[CrossRef]

Doran, N. J.

N. J. Smith, N. J. Doran, W. Forysiak, and F. M. Knox, J. Lightwave Technol. 15, 1808 (1997).
[CrossRef]

K. J. Blow and N. J. Doran, IEEE Photon. Technol. Lett. 3, 369 (1991).
[CrossRef]

N. J. Doran and K. J. Blow, IEEE J. Quantum Electron. 19, 1883 (1983).
[CrossRef]

Dudley, J. M.

J. M. Dudley, L. P. Barry, P. G. Bollond, J. D. Harvey, and R. Leonhardt, Opt. Fiber Technol. 4, 237 (1998).
[CrossRef]

Ellis, A. D.

D. J. Richardson, L. Dong, R. P. Chamberlin, A. D. Ellis, T. Widdowson, and W. A. Pender, Electron. Lett. 32, 4 (1996).
[CrossRef]

Forysiak, W.

N. J. Smith, N. J. Doran, W. Forysiak, and F. M. Knox, J. Lightwave Technol. 15, 1808 (1997).
[CrossRef]

Harper, P.

J. D. Ania-Castanon, V. Karalekas, P. Harper, and S. K. Turitsyn, Phys. Rev. Lett. 101, 123903 (2008).
[CrossRef] [PubMed]

Harvey, J. D.

J. M. Dudley, L. P. Barry, P. G. Bollond, J. D. Harvey, and R. Leonhardt, Opt. Fiber Technol. 4, 237 (1998).
[CrossRef]

Karalekas, V.

J. D. Ania-Castanon, V. Karalekas, P. Harper, and S. K. Turitsyn, Phys. Rev. Lett. 101, 123903 (2008).
[CrossRef] [PubMed]

Knox, F. M.

N. J. Smith, N. J. Doran, W. Forysiak, and F. M. Knox, J. Lightwave Technol. 15, 1808 (1997).
[CrossRef]

Leclerc, O.

Leonhardt, R.

J. M. Dudley, L. P. Barry, P. G. Bollond, J. D. Harvey, and R. Leonhardt, Opt. Fiber Technol. 4, 237 (1998).
[CrossRef]

Mollenauer, L. F.

L. F. Mollenauer, Optical Ampliers and Their Applications, OSA Technical Digest Series (Optical Society of America, 2001), paper OMA2.

Nishizawa, N.

Ohta, T.

Pender, W. A.

D. J. Richardson, L. Dong, R. P. Chamberlin, A. D. Ellis, T. Widdowson, and W. A. Pender, Electron. Lett. 32, 4 (1996).
[CrossRef]

Richardson, D. J.

D. J. Richardson, L. Dong, R. P. Chamberlin, A. D. Ellis, T. Widdowson, and W. A. Pender, Electron. Lett. 32, 4 (1996).
[CrossRef]

Shabbat, A. B.

V. E. Zakharov and A. B. Shabbat, Sov. Phys. JETP 34, 62 (1972).

Smith, N. J.

N. J. Smith, N. J. Doran, W. Forysiak, and F. M. Knox, J. Lightwave Technol. 15, 1808 (1997).
[CrossRef]

Sumimura, K.

Turitsyn, S. K.

J. D. Ania-Castanon, V. Karalekas, P. Harper, and S. K. Turitsyn, Phys. Rev. Lett. 101, 123903 (2008).
[CrossRef] [PubMed]

Widdowson, T.

D. J. Richardson, L. Dong, R. P. Chamberlin, A. D. Ellis, T. Widdowson, and W. A. Pender, Electron. Lett. 32, 4 (1996).
[CrossRef]

Zakharov, V. E.

V. E. Zakharov and A. B. Shabbat, Sov. Phys. JETP 34, 62 (1972).

Electron. Lett. (1)

D. J. Richardson, L. Dong, R. P. Chamberlin, A. D. Ellis, T. Widdowson, and W. A. Pender, Electron. Lett. 32, 4 (1996).
[CrossRef]

IEEE J. Quantum Electron. (1)

N. J. Doran and K. J. Blow, IEEE J. Quantum Electron. 19, 1883 (1983).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K. J. Blow and N. J. Doran, IEEE Photon. Technol. Lett. 3, 369 (1991).
[CrossRef]

J. Lightwave Technol. (1)

N. J. Smith, N. J. Doran, W. Forysiak, and F. M. Knox, J. Lightwave Technol. 15, 1808 (1997).
[CrossRef]

Opt. Express (1)

Opt. Fiber Technol. (1)

J. M. Dudley, L. P. Barry, P. G. Bollond, J. D. Harvey, and R. Leonhardt, Opt. Fiber Technol. 4, 237 (1998).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. Lett. (1)

J. D. Ania-Castanon, V. Karalekas, P. Harper, and S. K. Turitsyn, Phys. Rev. Lett. 101, 123903 (2008).
[CrossRef] [PubMed]

Sov. Phys. JETP (1)

V. E. Zakharov and A. B. Shabbat, Sov. Phys. JETP 34, 62 (1972).

Other (1)

L. F. Mollenauer, Optical Ampliers and Their Applications, OSA Technical Digest Series (Optical Society of America, 2001), paper OMA2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for observing the soliton transmission at different positions along the fiber.

Fig. 2
Fig. 2

(a) Spectrogram and temporal intensity profile of the launched pulse. (b) Power variation profile along a 22 km fiber span for the (i) nonlinear regime (SPM dominates), 0.83 W Raman power; (ii) soliton regime (virtually nondissipative), 0.56 W Raman power; and (iii) dispersive regime (dispersion dominates), 0.29 W Raman power. (c) Spectrogram and temporal intensity profile of the output pulse (i) when SPM dominates, (ii) for the soliton regime, and (iii) when dispersion dominates.

Fig. 3
Fig. 3

(a) Set of experimental (top row) and numerical simulation (bottom row) frequency-resolved optical gating spectrograms at different locations along the fiber span and (b) experimental results for pulse width versus propagation distance.

Fig. 4
Fig. 4

Measured spectrograms from launch pulses at (a) 50 km and (b) 72 km , and output pulses at (c) 50 km and (d) 72 km .

Metrics