Abstract

Optical scanning holography is a powerful holographic recording technique in which only a single two-dimensional scan is needed to record three-dimensional information. As in standard digital holography, for the reconstruction of a sectional image, the resulting data must then be postprocessed to obtain sectional content. We propose a blind sectional image reconstruction technique to automate the data processing. This reconstruction uses edge information to determine the appropriate Fresnel zone plates automatically and applies inverse imaging to recover the sectional images with significant suppression of the defocus noise. The experimental data used to verify the algorithm are measured from a physical implementation of the optical scanning holography system.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T.-C. Poon, J. Opt. Soc. Am. A 2, 521 (1985).
    [CrossRef]
  2. J. Swoger, M. Martínez-Corral, J. Huisken, and E. Stelzer, J. Opt. Soc. Am. A 19, 1910 (2002).
    [CrossRef]
  3. E. Lam, X. Zhang, H. Vo, T.-C. Poon, and G. Indebetouw, “Three-dimensional microscopy and sectional image reconstruction using optical scanning holography,” Appl. Opt. (Doc. ID 114194, to be published).
    [PubMed]
  4. T.-C. Poon, J. Hologr. Speckle 1, 6 (2004).
    [CrossRef]
  5. T.-C. Poon and P. Banerjee, Contemporary Optical Image Processing with MATLAB, 1st ed. (Elsevier, 2001).
  6. T. Kim, Appl. Opt. 45, 872 (2006).
    [CrossRef] [PubMed]
  7. H. Kim, S.-W. Min, B. Lee, and T.-C. Poon, Appl. Opt. 47, 164 (2008).
    [CrossRef]
  8. X. Zhang, E. Y. Lam, and T.-C. Poon, Opt. Express 16, 17215 (2008).
    [CrossRef] [PubMed]
  9. J.-P. Liu and T.-C. Poon, Opt. Lett. 34, 250 (2009).
    [CrossRef] [PubMed]
  10. C. R. Vogel, Computational Methods for Inverse Problems, 1st ed. (SIAM, 2002).
    [CrossRef]
  11. E. Y. Lam and J. W. Goodman, J. Opt. Soc. Am. A 17, 1177 (2000).
    [CrossRef]
  12. Z. Xu and E. Y. Lam, Opt. Lett. 34, 1453 (2009).
    [CrossRef] [PubMed]
  13. F. Dubois, C. Schockaert, N. Callens, and C. Yourassowsky, Opt. Express 14, 5895 (2006).
    [CrossRef] [PubMed]

2009 (2)

2008 (2)

2006 (2)

2004 (1)

T.-C. Poon, J. Hologr. Speckle 1, 6 (2004).
[CrossRef]

2002 (1)

2000 (1)

1985 (1)

Banerjee, P.

T.-C. Poon and P. Banerjee, Contemporary Optical Image Processing with MATLAB, 1st ed. (Elsevier, 2001).

Callens, N.

Dubois, F.

Goodman, J. W.

Huisken, J.

Indebetouw, G.

E. Lam, X. Zhang, H. Vo, T.-C. Poon, and G. Indebetouw, “Three-dimensional microscopy and sectional image reconstruction using optical scanning holography,” Appl. Opt. (Doc. ID 114194, to be published).
[PubMed]

Kim, H.

Kim, T.

Lam, E.

E. Lam, X. Zhang, H. Vo, T.-C. Poon, and G. Indebetouw, “Three-dimensional microscopy and sectional image reconstruction using optical scanning holography,” Appl. Opt. (Doc. ID 114194, to be published).
[PubMed]

Lam, E. Y.

Lee, B.

Liu, J.-P.

Martínez-Corral, M.

Min, S.-W.

Poon, T.-C.

J.-P. Liu and T.-C. Poon, Opt. Lett. 34, 250 (2009).
[CrossRef] [PubMed]

X. Zhang, E. Y. Lam, and T.-C. Poon, Opt. Express 16, 17215 (2008).
[CrossRef] [PubMed]

H. Kim, S.-W. Min, B. Lee, and T.-C. Poon, Appl. Opt. 47, 164 (2008).
[CrossRef]

T.-C. Poon, J. Hologr. Speckle 1, 6 (2004).
[CrossRef]

T.-C. Poon, J. Opt. Soc. Am. A 2, 521 (1985).
[CrossRef]

T.-C. Poon and P. Banerjee, Contemporary Optical Image Processing with MATLAB, 1st ed. (Elsevier, 2001).

E. Lam, X. Zhang, H. Vo, T.-C. Poon, and G. Indebetouw, “Three-dimensional microscopy and sectional image reconstruction using optical scanning holography,” Appl. Opt. (Doc. ID 114194, to be published).
[PubMed]

Schockaert, C.

Stelzer, E.

Swoger, J.

Vo, H.

E. Lam, X. Zhang, H. Vo, T.-C. Poon, and G. Indebetouw, “Three-dimensional microscopy and sectional image reconstruction using optical scanning holography,” Appl. Opt. (Doc. ID 114194, to be published).
[PubMed]

Vogel, C. R.

C. R. Vogel, Computational Methods for Inverse Problems, 1st ed. (SIAM, 2002).
[CrossRef]

Xu, Z.

Yourassowsky, C.

Zhang, X.

X. Zhang, E. Y. Lam, and T.-C. Poon, Opt. Express 16, 17215 (2008).
[CrossRef] [PubMed]

E. Lam, X. Zhang, H. Vo, T.-C. Poon, and G. Indebetouw, “Three-dimensional microscopy and sectional image reconstruction using optical scanning holography,” Appl. Opt. (Doc. ID 114194, to be published).
[PubMed]

Appl. Opt. (3)

E. Lam, X. Zhang, H. Vo, T.-C. Poon, and G. Indebetouw, “Three-dimensional microscopy and sectional image reconstruction using optical scanning holography,” Appl. Opt. (Doc. ID 114194, to be published).
[PubMed]

T. Kim, Appl. Opt. 45, 872 (2006).
[CrossRef] [PubMed]

H. Kim, S.-W. Min, B. Lee, and T.-C. Poon, Appl. Opt. 47, 164 (2008).
[CrossRef]

J. Hologr. Speckle (1)

T.-C. Poon, J. Hologr. Speckle 1, 6 (2004).
[CrossRef]

J. Opt. Soc. Am. A (3)

Opt. Express (2)

Opt. Lett. (2)

Other (2)

C. R. Vogel, Computational Methods for Inverse Problems, 1st ed. (SIAM, 2002).
[CrossRef]

T.-C. Poon and P. Banerjee, Contemporary Optical Image Processing with MATLAB, 1st ed. (Elsevier, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

OSH system. M, mirrors; AOFS1, AOFS2, acousto-optical frequency shifters; BS1, BS2, beam splitters; BE1, BE2, beam expanders; L1, focusing lens; L2, collecting lens; PD1, PD2, photodetectors.

Fig. 2
Fig. 2

(a) Real and (b) imaginary parts of the recorded hologram.

Fig. 3
Fig. 3

Imaginary parts of convolution results and their edge detection results. (a) Imaginary result with FZP at depth distance of 83.83 cm , (b) Same as (a) but at 86.98 cm . (c) Edge detection of (a), and (d) edge detection of (b). Note that at 87 cm , the “S” should be in focus. It is clear that at around 87 cm , as shown in (d), the edge amount is smaller than that in (c).

Fig. 4
Fig. 4

Plot of the edge amount (scale arbitrary) of a sequence of convolutions.

Fig. 5
Fig. 5

Sectional images reconstructed by the convolution method.

Fig. 6
Fig. 6

Sectional images reconstructed by inverse imaging.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

H ( x , y ) = i = 0 n I 0 ( x , y , z i ) FZP ( x , y , z i ) ,
γ = i = 0 n M i ψ i = M ψ ,
M 0 * γ = M 0 * M 0 ψ 0 + M 0 * M 1 ψ 1 + + M 0 * M n ψ n .
Im [ M 0 * γ ] = Im [ M 0 * M 0 ψ 0 + M 0 * M 1 ψ 1 + + M 0 * M n ψ n ] = Im [ M 0 * M 1 ψ 1 + + M 0 * M n ψ n ] .
Im [ M r * γ ] = Im [ M r * M 0 ψ 0 + + M r * M n ψ n ] .

Metrics