Abstract

The effect of the dipole–dipole interaction (DDI) on absorption processes has been investigated in photonic nanowires. They are manufactured by embedding a photonic crystal into another crystal. The embedded crystal is doped with an ensemble of three-level quantum dots. A probe field is applied to monitor the absorption coefficient. A control field is applied to induce dipole moments in quantum dots. Owing to these fields dipoles are induced in quantum dots, and they interact with each other via the DDI. Quantum dots also interact with bound photon states of the nanowire via the electron-bound photon interaction. It is found that the system can be switched from a transparent state to an absorbing state through the DDI. The switching mechanism can be controlled by changing the location of a resonant energy in the quantum dots.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. R. Singh, Appl. Phys. B 93, 91 (2008).
    [CrossRef]
  2. E. Istrate and E. H. Sargent, Rev. Mod. Phys. 78, 455 (2006).
    [CrossRef]
  3. S. John, Phys. Rev. Lett. 58, 2486 (1987).
    [CrossRef] [PubMed]
  4. J. P. Dowling and C. M. Bowden, Phys. Rev. A 47, 1247 (1997).
  5. T. Unold, K. Mueller, C. Lienau, T. Elsaesser, and A. D. Wieck, Phys. Rev. Lett. 94, 137404 (2005).
    [CrossRef] [PubMed]
  6. Ö. Çakir, A. A. Klyachko, and A. S. Shumovsky, Phys. Rev. A 71, 034303 (2005).
    [CrossRef]
  7. C. Skornia, J. von Zanthier, G. S. Agarwal, E. Werner, and H. Walther, Phys. Rev. A 64, 053803 (2001).
    [CrossRef]
  8. S. John and J. Wang, Phys. Rev. B 43, 12772 (1991).
    [CrossRef]
  9. M. R. Singh, Phys. Lett. A 372, 5083 (2008).
    [CrossRef]
  10. J. F. Dynes, M. D. Frogley, M. Beck, J. Faist, and C. C. Phillips, Phys. Rev. Lett. 94, 157403 (2005).
    [CrossRef] [PubMed]
  11. P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, Nature 430, 654 (2004).
    [CrossRef] [PubMed]

2008 (2)

M. R. Singh, Appl. Phys. B 93, 91 (2008).
[CrossRef]

M. R. Singh, Phys. Lett. A 372, 5083 (2008).
[CrossRef]

2006 (1)

E. Istrate and E. H. Sargent, Rev. Mod. Phys. 78, 455 (2006).
[CrossRef]

2005 (3)

J. F. Dynes, M. D. Frogley, M. Beck, J. Faist, and C. C. Phillips, Phys. Rev. Lett. 94, 157403 (2005).
[CrossRef] [PubMed]

T. Unold, K. Mueller, C. Lienau, T. Elsaesser, and A. D. Wieck, Phys. Rev. Lett. 94, 137404 (2005).
[CrossRef] [PubMed]

Ö. Çakir, A. A. Klyachko, and A. S. Shumovsky, Phys. Rev. A 71, 034303 (2005).
[CrossRef]

2004 (1)

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, Nature 430, 654 (2004).
[CrossRef] [PubMed]

2001 (1)

C. Skornia, J. von Zanthier, G. S. Agarwal, E. Werner, and H. Walther, Phys. Rev. A 64, 053803 (2001).
[CrossRef]

1997 (1)

J. P. Dowling and C. M. Bowden, Phys. Rev. A 47, 1247 (1997).

1991 (1)

S. John and J. Wang, Phys. Rev. B 43, 12772 (1991).
[CrossRef]

1987 (1)

S. John, Phys. Rev. Lett. 58, 2486 (1987).
[CrossRef] [PubMed]

Agarwal, G. S.

C. Skornia, J. von Zanthier, G. S. Agarwal, E. Werner, and H. Walther, Phys. Rev. A 64, 053803 (2001).
[CrossRef]

Beck, M.

J. F. Dynes, M. D. Frogley, M. Beck, J. Faist, and C. C. Phillips, Phys. Rev. Lett. 94, 157403 (2005).
[CrossRef] [PubMed]

Bowden, C. M.

J. P. Dowling and C. M. Bowden, Phys. Rev. A 47, 1247 (1997).

Çakir, Ö.

Ö. Çakir, A. A. Klyachko, and A. S. Shumovsky, Phys. Rev. A 71, 034303 (2005).
[CrossRef]

Dowling, J. P.

J. P. Dowling and C. M. Bowden, Phys. Rev. A 47, 1247 (1997).

Dynes, J. F.

J. F. Dynes, M. D. Frogley, M. Beck, J. Faist, and C. C. Phillips, Phys. Rev. Lett. 94, 157403 (2005).
[CrossRef] [PubMed]

Elsaesser, T.

T. Unold, K. Mueller, C. Lienau, T. Elsaesser, and A. D. Wieck, Phys. Rev. Lett. 94, 137404 (2005).
[CrossRef] [PubMed]

Faist, J.

J. F. Dynes, M. D. Frogley, M. Beck, J. Faist, and C. C. Phillips, Phys. Rev. Lett. 94, 157403 (2005).
[CrossRef] [PubMed]

Frogley, M. D.

J. F. Dynes, M. D. Frogley, M. Beck, J. Faist, and C. C. Phillips, Phys. Rev. Lett. 94, 157403 (2005).
[CrossRef] [PubMed]

Irman, A.

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, Nature 430, 654 (2004).
[CrossRef] [PubMed]

Istrate, E.

E. Istrate and E. H. Sargent, Rev. Mod. Phys. 78, 455 (2006).
[CrossRef]

John, S.

S. John and J. Wang, Phys. Rev. B 43, 12772 (1991).
[CrossRef]

S. John, Phys. Rev. Lett. 58, 2486 (1987).
[CrossRef] [PubMed]

Klyachko, A. A.

Ö. Çakir, A. A. Klyachko, and A. S. Shumovsky, Phys. Rev. A 71, 034303 (2005).
[CrossRef]

Lienau, C.

T. Unold, K. Mueller, C. Lienau, T. Elsaesser, and A. D. Wieck, Phys. Rev. Lett. 94, 137404 (2005).
[CrossRef] [PubMed]

Lodahl, P.

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, Nature 430, 654 (2004).
[CrossRef] [PubMed]

Mueller, K.

T. Unold, K. Mueller, C. Lienau, T. Elsaesser, and A. D. Wieck, Phys. Rev. Lett. 94, 137404 (2005).
[CrossRef] [PubMed]

Nikolaev, I. S.

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, Nature 430, 654 (2004).
[CrossRef] [PubMed]

Overgaag, K.

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, Nature 430, 654 (2004).
[CrossRef] [PubMed]

Phillips, C. C.

J. F. Dynes, M. D. Frogley, M. Beck, J. Faist, and C. C. Phillips, Phys. Rev. Lett. 94, 157403 (2005).
[CrossRef] [PubMed]

Sargent, E. H.

E. Istrate and E. H. Sargent, Rev. Mod. Phys. 78, 455 (2006).
[CrossRef]

Shumovsky, A. S.

Ö. Çakir, A. A. Klyachko, and A. S. Shumovsky, Phys. Rev. A 71, 034303 (2005).
[CrossRef]

Singh, M. R.

M. R. Singh, Appl. Phys. B 93, 91 (2008).
[CrossRef]

M. R. Singh, Phys. Lett. A 372, 5083 (2008).
[CrossRef]

Skornia, C.

C. Skornia, J. von Zanthier, G. S. Agarwal, E. Werner, and H. Walther, Phys. Rev. A 64, 053803 (2001).
[CrossRef]

Unold, T.

T. Unold, K. Mueller, C. Lienau, T. Elsaesser, and A. D. Wieck, Phys. Rev. Lett. 94, 137404 (2005).
[CrossRef] [PubMed]

van Driel, A. F.

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, Nature 430, 654 (2004).
[CrossRef] [PubMed]

Vanmaekelbergh, D.

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, Nature 430, 654 (2004).
[CrossRef] [PubMed]

von Zanthier, J.

C. Skornia, J. von Zanthier, G. S. Agarwal, E. Werner, and H. Walther, Phys. Rev. A 64, 053803 (2001).
[CrossRef]

Vos, W. L.

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, Nature 430, 654 (2004).
[CrossRef] [PubMed]

Walther, H.

C. Skornia, J. von Zanthier, G. S. Agarwal, E. Werner, and H. Walther, Phys. Rev. A 64, 053803 (2001).
[CrossRef]

Wang, J.

S. John and J. Wang, Phys. Rev. B 43, 12772 (1991).
[CrossRef]

Werner, E.

C. Skornia, J. von Zanthier, G. S. Agarwal, E. Werner, and H. Walther, Phys. Rev. A 64, 053803 (2001).
[CrossRef]

Wieck, A. D.

T. Unold, K. Mueller, C. Lienau, T. Elsaesser, and A. D. Wieck, Phys. Rev. Lett. 94, 137404 (2005).
[CrossRef] [PubMed]

Appl. Phys. B (1)

M. R. Singh, Appl. Phys. B 93, 91 (2008).
[CrossRef]

Nature (1)

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, Nature 430, 654 (2004).
[CrossRef] [PubMed]

Phys. Lett. A (1)

M. R. Singh, Phys. Lett. A 372, 5083 (2008).
[CrossRef]

Phys. Rev. A (3)

Ö. Çakir, A. A. Klyachko, and A. S. Shumovsky, Phys. Rev. A 71, 034303 (2005).
[CrossRef]

C. Skornia, J. von Zanthier, G. S. Agarwal, E. Werner, and H. Walther, Phys. Rev. A 64, 053803 (2001).
[CrossRef]

J. P. Dowling and C. M. Bowden, Phys. Rev. A 47, 1247 (1997).

Phys. Rev. B (1)

S. John and J. Wang, Phys. Rev. B 43, 12772 (1991).
[CrossRef]

Phys. Rev. Lett. (3)

J. F. Dynes, M. D. Frogley, M. Beck, J. Faist, and C. C. Phillips, Phys. Rev. Lett. 94, 157403 (2005).
[CrossRef] [PubMed]

T. Unold, K. Mueller, C. Lienau, T. Elsaesser, and A. D. Wieck, Phys. Rev. Lett. 94, 137404 (2005).
[CrossRef] [PubMed]

S. John, Phys. Rev. Lett. 58, 2486 (1987).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

E. Istrate and E. H. Sargent, Rev. Mod. Phys. 78, 455 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of a three-level quantum dot.

Fig. 2
Fig. 2

Im ( χ d d / χ 0 ) is plotted as a function of δ 21 . The solid and the dotted curves correspond to C 31 = 0 and C 31 = 5 , respectively. For both curves C 21 = 0 . The value of the dashed-dotted curve corresponds to C 31 = 5 and C 21 = 5 .

Fig. 3
Fig. 3

Absorption coefficient Im ( χ d d / χ 0 ) is plotted as a function of the normalized probe detuning δ 21 and the resonance energy ε 31 .

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

H d d = 2 h 21 σ 21 +   exp [ i ( ε p ε 21 ) t / ] 2 h 31 σ 31 +   exp [ i ( ε c ε 31 ) t / ] + H .c . ,
H EBP = n , m , k z ( ε n m k z p n m k z + p n m k z i = 2 , 3 g i 1 ( ε n m k z ) p n m k z σ i 1 +   exp [ i ( ε i 1 ε n m k z ) t / ] ) + H .c . ,
ε n m k z = ( c / 4 n a r a ) cos 1 [ 4 n a ( n a + 1 ) 2 cos ( k z 2 + k n 2 + k m 2 L a ) + ( n a 1 ) 2 ( n a + 1 ) 2 ] ,
k j = F a 2 F b 2 k j 2 / tan ( k j d i / 2 j π / 2 ) ,     j = n , m ,
i = x , y ,
F i = ( 1 / L i ) arccos [ ( n i + 1 ) 2 cos ( 4 ε n m k z n i r i / c ) / 4 n i ( n i 1 ) 2 / 4 n i ] ,     j = a , b ,
d ρ 33 / d τ = i ( Ξ 31 / γ 0 ) ρ 33 + i x 13 ρ 13 i x 13 ρ 31 + i h 31 ρ 13 i h 31 ρ 31 ,
d ρ 22 / d τ = i ( Ξ 21 / γ 0 ) ρ 22 + i x 12 ρ 12 i x 12 ρ 21 + i h 21 ρ 12 i h 21 ρ 21 ,
d ρ 31 / d τ = [ i Ξ 31 / 2 γ 0 i ( ε 31 ε c ) / γ 0 ] ρ 31 i x 13 ( ρ 33 ρ 11 ) i x 12 ρ 32 i h 31 ( ρ 33 ρ 11 ) i h 21 ρ 32 ,
d ρ 21 / d τ = [ i Ξ 21 / 2 γ 0 i ( ε 21 ε p ) / γ 0 ] ρ 21 + i x 12 ( ρ 11 ρ 22 ) i x 13 ρ 23 + i h 21 ( ρ 11 ρ 22 ) i h 31 ρ 23 ,
d ρ 32 / d τ = [ i ( Ξ 31 + Ξ 21 ) / 2 γ 0 i ( ε 32 ε c + ε p ) / γ 0 ] ρ 32 + i x 13 ρ 12 i x 12 ρ 31 + i h 31 ρ 12 i h 21 ρ 31 ,
Ξ i 1 = ( i ε i 1 μ i 1 2 / 2 ϵ 0 d x d y d z ) lim s 0 + n m D ( ε n m k z ) d ε n m k z [ s + i ( ε n m k z ε i 1 ) ] 1 ,
D ( ε n m k z ) = F A ( ε n m k z ) r a ( n a + 1 ) 2 sin ( 4 ε n m k z n a r a / c ) Θ ( ε n m k z ε n m ) 2 π c   sin [ F A ( ε n m k z ) L a ] F A 2 ( ε n m k z ) F A 2 ( ε n m ) ,
χ d d χ 0 = i [ | x 13 + C 31 ϕ | 2 ( 2 ξ 2 1 ) + d 23 d 13 ( 1 ξ 2 ) ] d 13 ( d 21 d 23 + | x 13 + C 31 ϕ | 2 ) C 21 [ | x 13 + C 31 ϕ | 2 ( 2 ξ 2 1 ) + d 23 d 13 ( 1 ξ 2 ) ] ,

Metrics