Abstract

We present an ultraminiature fiber-optic sensor based on a fiber taper interferometer with a subwavelength tip. The interferometer is fabricated on the end face of a single-mode fiber by wet etching using buffered hydrofluoric acid. The process creates a protruding core on the end face with a tapered shape. Strong interference is observed between the reflections from the fiber cladding and the tip of the taper even for tip size as small as λ4. A time-domain analysis of the sensor spectrum recorded during the etching process produces the temporal evolution of both reflections, indicating that the interference mechanism involves intermodal coupling. The interferometer’s sensing application is demonstrated by the effective measurement of refractive index and temperature.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Totsu, Y. Haga, and M. Esashi, J. Micromech. Microeng. 15, 71 (2005).
    [CrossRef]
  2. Y. Zhu and A. Wang, IEEE Photon. Technol. Lett. 17, 447 (2005).
    [CrossRef]
  3. D. Donlagic and E. Cibula, Opt. Lett. 30, 2071 (2005).
    [CrossRef] [PubMed]
  4. T. Wei, Y. K. Han, H. L. Tsai, and H. Xiao, Opt. Lett. 33, 536 (2008).
    [CrossRef] [PubMed]
  5. L. Schultheis, H. Amstutz, and M. Kaufmann, Opt. Lett. 13, 782 (1988).
    [CrossRef] [PubMed]
  6. F. J. Arregui, I. R. Matias, Y. J. Liu, K. M. Lenahan, and R. O. Claus, Opt. Lett. 24, 596 (1999).
    [CrossRef]
  7. M. Ohtsu, J. Lightwave Technol. 13, 1200 (1995).
    [CrossRef]
  8. F. Renna, D. Cox, and G. Brambilla, Opt. Express 17, 7658 (2009).
    [CrossRef] [PubMed]
  9. T. Pangaribuan, K. Yamada, S. D. Jiang, H. Ohsawa, and M. Ohtsu, Jpn. J. Appl. Phys. Part 2 31, L1302 (1992).
    [CrossRef]
  10. S. Lacroix, R. Bourbonnais, F. Gonthier, and J. Bures, Appl. Opt. 25, 4421 (1986).
    [CrossRef] [PubMed]

2009

2008

2005

K. Totsu, Y. Haga, and M. Esashi, J. Micromech. Microeng. 15, 71 (2005).
[CrossRef]

Y. Zhu and A. Wang, IEEE Photon. Technol. Lett. 17, 447 (2005).
[CrossRef]

D. Donlagic and E. Cibula, Opt. Lett. 30, 2071 (2005).
[CrossRef] [PubMed]

1999

1995

M. Ohtsu, J. Lightwave Technol. 13, 1200 (1995).
[CrossRef]

1992

T. Pangaribuan, K. Yamada, S. D. Jiang, H. Ohsawa, and M. Ohtsu, Jpn. J. Appl. Phys. Part 2 31, L1302 (1992).
[CrossRef]

1988

1986

Amstutz, H.

Arregui, F. J.

Bourbonnais, R.

Brambilla, G.

Bures, J.

Cibula, E.

Claus, R. O.

Cox, D.

Donlagic, D.

Esashi, M.

K. Totsu, Y. Haga, and M. Esashi, J. Micromech. Microeng. 15, 71 (2005).
[CrossRef]

Gonthier, F.

Haga, Y.

K. Totsu, Y. Haga, and M. Esashi, J. Micromech. Microeng. 15, 71 (2005).
[CrossRef]

Han, Y. K.

Jiang, S. D.

T. Pangaribuan, K. Yamada, S. D. Jiang, H. Ohsawa, and M. Ohtsu, Jpn. J. Appl. Phys. Part 2 31, L1302 (1992).
[CrossRef]

Kaufmann, M.

Lacroix, S.

Lenahan, K. M.

Liu, Y. J.

Matias, I. R.

Ohsawa, H.

T. Pangaribuan, K. Yamada, S. D. Jiang, H. Ohsawa, and M. Ohtsu, Jpn. J. Appl. Phys. Part 2 31, L1302 (1992).
[CrossRef]

Ohtsu, M.

M. Ohtsu, J. Lightwave Technol. 13, 1200 (1995).
[CrossRef]

T. Pangaribuan, K. Yamada, S. D. Jiang, H. Ohsawa, and M. Ohtsu, Jpn. J. Appl. Phys. Part 2 31, L1302 (1992).
[CrossRef]

Pangaribuan, T.

T. Pangaribuan, K. Yamada, S. D. Jiang, H. Ohsawa, and M. Ohtsu, Jpn. J. Appl. Phys. Part 2 31, L1302 (1992).
[CrossRef]

Renna, F.

Schultheis, L.

Totsu, K.

K. Totsu, Y. Haga, and M. Esashi, J. Micromech. Microeng. 15, 71 (2005).
[CrossRef]

Tsai, H. L.

Wang, A.

Y. Zhu and A. Wang, IEEE Photon. Technol. Lett. 17, 447 (2005).
[CrossRef]

Wei, T.

Xiao, H.

Yamada, K.

T. Pangaribuan, K. Yamada, S. D. Jiang, H. Ohsawa, and M. Ohtsu, Jpn. J. Appl. Phys. Part 2 31, L1302 (1992).
[CrossRef]

Zhu, Y.

Y. Zhu and A. Wang, IEEE Photon. Technol. Lett. 17, 447 (2005).
[CrossRef]

Appl. Opt.

IEEE Photon. Technol. Lett.

Y. Zhu and A. Wang, IEEE Photon. Technol. Lett. 17, 447 (2005).
[CrossRef]

J. Lightwave Technol.

M. Ohtsu, J. Lightwave Technol. 13, 1200 (1995).
[CrossRef]

J. Micromech. Microeng.

K. Totsu, Y. Haga, and M. Esashi, J. Micromech. Microeng. 15, 71 (2005).
[CrossRef]

Jpn. J. Appl. Phys. Part 2

T. Pangaribuan, K. Yamada, S. D. Jiang, H. Ohsawa, and M. Ohtsu, Jpn. J. Appl. Phys. Part 2 31, L1302 (1992).
[CrossRef]

Opt. Express

Opt. Lett.

Supplementary Material (1)

» Media 1: AVI (3791 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Interferometer fabrication. (a) Etching process. (b), (c) SEM photos of the taper.

Fig. 2
Fig. 2

Time-dependent interferometer signal during etching. (a) Sensor spectra (log scale) at 2 h interval. Media 1 shows real-time spectral evolution in linear scale. (b) Temporal intensity changes of the sensor; tip diminishes after 8 h 28 min .

Fig. 3
Fig. 3

Analysis of individual reflection. (a) Reflections by the cladding ( I cl ) and the core ( I cr ) . Theoretical estimate of I cr based on (b) adiabatic approximation and (c) sudden approximation.

Fig. 4
Fig. 4

Taper interferometer as a sensor for (a) refractive index and (b) temperature.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

{ I + ( t + ) = [ I cr ( t + ) + I cl ( t + ) ] 2 I ( t ) = [ I cr ( t ) I cl ( t ) ] 2 } t + , t t = ( t + + t ) 2 { I cr ( t ) = [ I + ( t + ) + I ( t ) ] 2 4 I cl ( t ) = [ I + ( t + ) I ( t ) ] 2 4 } ,

Metrics