Abstract

We report on kilohertz-repetition-rate flame temperature measurements performed using blue diode lasers. Two-line atomic fluorescence was performed by using diode lasers emitting at around 410 and 451 nm to probe seeded atomic indium. At a repetition rate of 3.5 kHz our technique offers a precision of 1.5% at 2000 K in laminar methane/air flames. The spatial resolution is better than 150μm, while the setup is compact and easy to operate, at much lower cost than alternative techniques. By modeling the spectral overlap between the locked laser and the probed indium lines we avoid the need for any calibration of the measurements. We demonstrate the capability of the technique for time-resolved measurements in an acoustically perturbed flame. The technique is applicable in flames with a wide range of compositions including sooting flames.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. H. Wang, N. T. Clemens, and P. L. Varghese, Appl. Opt. 44, 6741 (2005).
    [CrossRef] [PubMed]
  2. R. G. Joklik and J. W. Daily, Appl. Opt. 21, 4158 (1982).
    [CrossRef] [PubMed]
  3. J. Engström, J. Nygren, M. Aldén, and C. F. Kaminski, Opt. Lett. 25, 1469 (2000).
    [CrossRef]
  4. P. R. Medwell, Q. N. Chan, P. A. M. Kalt, Z. T. Alwahabi, B. B. Dally, and G. J. Nathan, Appl. Opt. 48, 1237 (2009).
    [CrossRef]
  5. G. Zizak, N. Omenetto, and J. D. Winefordner, Opt. Eng. 23, 749 (1984).
  6. J. E. Dec and J. O. Keller, in Twenty-First Symposium on Combustion (The Combustion Institute, 1986), p. 1737.
  7. J. Hult, I. S. Burns, and C. F. Kaminski, Opt. Lett. 29, 827 (2004).
    [CrossRef] [PubMed]
  8. J. Hult, I. S. Burns, and C. F. Kaminski, Proc. Combust. Inst. 30, 1535 (2005).
    [CrossRef]
  9. I. S. Burns, J. Hult, G. Hartung, and C. F. Kaminski, Proc. Combust. Inst. 31, 775 (2007).
    [CrossRef]
  10. J. Hult, I. S. Burns, and C. F. Kaminski, Appl. Opt. 44, 3675 (2005).
    [CrossRef] [PubMed]
  11. J. H. Frank and T. B. Settersten, Proc. Combust. Inst. 30, 1527 (2005).
    [CrossRef]

2009 (1)

2007 (1)

I. S. Burns, J. Hult, G. Hartung, and C. F. Kaminski, Proc. Combust. Inst. 31, 775 (2007).
[CrossRef]

2005 (4)

J. Hult, I. S. Burns, and C. F. Kaminski, Appl. Opt. 44, 3675 (2005).
[CrossRef] [PubMed]

J. H. Frank and T. B. Settersten, Proc. Combust. Inst. 30, 1527 (2005).
[CrossRef]

G. H. Wang, N. T. Clemens, and P. L. Varghese, Appl. Opt. 44, 6741 (2005).
[CrossRef] [PubMed]

J. Hult, I. S. Burns, and C. F. Kaminski, Proc. Combust. Inst. 30, 1535 (2005).
[CrossRef]

2004 (1)

2000 (1)

1984 (1)

G. Zizak, N. Omenetto, and J. D. Winefordner, Opt. Eng. 23, 749 (1984).

1982 (1)

Aldén, M.

Alwahabi, Z. T.

Burns, I. S.

I. S. Burns, J. Hult, G. Hartung, and C. F. Kaminski, Proc. Combust. Inst. 31, 775 (2007).
[CrossRef]

J. Hult, I. S. Burns, and C. F. Kaminski, Proc. Combust. Inst. 30, 1535 (2005).
[CrossRef]

J. Hult, I. S. Burns, and C. F. Kaminski, Appl. Opt. 44, 3675 (2005).
[CrossRef] [PubMed]

J. Hult, I. S. Burns, and C. F. Kaminski, Opt. Lett. 29, 827 (2004).
[CrossRef] [PubMed]

Chan, Q. N.

Clemens, N. T.

Daily, J. W.

Dally, B. B.

Dec, J. E.

J. E. Dec and J. O. Keller, in Twenty-First Symposium on Combustion (The Combustion Institute, 1986), p. 1737.

Engström, J.

Frank, J. H.

J. H. Frank and T. B. Settersten, Proc. Combust. Inst. 30, 1527 (2005).
[CrossRef]

Hartung, G.

I. S. Burns, J. Hult, G. Hartung, and C. F. Kaminski, Proc. Combust. Inst. 31, 775 (2007).
[CrossRef]

Hult, J.

I. S. Burns, J. Hult, G. Hartung, and C. F. Kaminski, Proc. Combust. Inst. 31, 775 (2007).
[CrossRef]

J. Hult, I. S. Burns, and C. F. Kaminski, Proc. Combust. Inst. 30, 1535 (2005).
[CrossRef]

J. Hult, I. S. Burns, and C. F. Kaminski, Appl. Opt. 44, 3675 (2005).
[CrossRef] [PubMed]

J. Hult, I. S. Burns, and C. F. Kaminski, Opt. Lett. 29, 827 (2004).
[CrossRef] [PubMed]

Joklik, R. G.

Kalt, P. A. M.

Kaminski, C. F.

Keller, J. O.

J. E. Dec and J. O. Keller, in Twenty-First Symposium on Combustion (The Combustion Institute, 1986), p. 1737.

Medwell, P. R.

Nathan, G. J.

Nygren, J.

Omenetto, N.

G. Zizak, N. Omenetto, and J. D. Winefordner, Opt. Eng. 23, 749 (1984).

Settersten, T. B.

J. H. Frank and T. B. Settersten, Proc. Combust. Inst. 30, 1527 (2005).
[CrossRef]

Varghese, P. L.

Wang, G. H.

Winefordner, J. D.

G. Zizak, N. Omenetto, and J. D. Winefordner, Opt. Eng. 23, 749 (1984).

Zizak, G.

G. Zizak, N. Omenetto, and J. D. Winefordner, Opt. Eng. 23, 749 (1984).

Appl. Opt. (4)

Opt. Eng. (1)

G. Zizak, N. Omenetto, and J. D. Winefordner, Opt. Eng. 23, 749 (1984).

Opt. Lett. (2)

Proc. Combust. Inst. (3)

J. Hult, I. S. Burns, and C. F. Kaminski, Proc. Combust. Inst. 30, 1535 (2005).
[CrossRef]

I. S. Burns, J. Hult, G. Hartung, and C. F. Kaminski, Proc. Combust. Inst. 31, 775 (2007).
[CrossRef]

J. H. Frank and T. B. Settersten, Proc. Combust. Inst. 30, 1527 (2005).
[CrossRef]

Other (1)

J. E. Dec and J. O. Keller, in Twenty-First Symposium on Combustion (The Combustion Institute, 1986), p. 1737.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Components of the setup comprise: photodiodes (PD), lenses (L), photomultiplier tube (PMT), interference filter (IF), beam splitters (BS), beam combiner (BC), mirror (M), hollow cathode lamp (HCL), and two ECDLs.

Fig. 2
Fig. 2

Curves represent indium spectra for excitation near (a) 410 and (b) 451 nm at various temperatures. Black, solid vertical lines denote locking positions of (a) −1.7 and (b) 12.3 GHz on a relative frequency scale. The underlying peaks represent HCL spectra.

Fig. 3
Fig. 3

(a)–(f) of indium chemiluminescence show the flame front evolution after a pulse in steps of 1 ms. The corresponding plot shows time-resolved temperatures at point X in the flame along with the original fluorescence trace.

Metrics