Abstract

We present differential-absorption photoacoustic imaging, which detects the difference between transient and ground-state absorption, for contrast enhancement based on suppressing undesired objects. Two tubes were imaged. One contains a Pt(II) octaethylporphine (PtOEP) dye solution and serves as an object of interest, while the other contains an IR-783 (from Sigma-Aldrich) dye solution and serves as an object to suppress. Although the IR-783 tube dominates the conventional photoacoustic image, it is suppressed by 43dB and consequently significantly overwhelmed by the PtOEP tube in the differential-absorption photoacoustic image. Imaging depth in this mode is also discussed.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, and F. K. Tittel, Proc. SPIE 2134A, 122 (1994).
  2. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, Nat. Biotechnol. 21, 803 (2003).
    [CrossRef] [PubMed]
  3. S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 978 (2007).
    [CrossRef] [PubMed]
  4. G. Kim, S.-W. Huang, K. C. Day, M. O'Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, J. Biomed. Opt. 12, 044020 (2007).
    [CrossRef] [PubMed]
  5. P.-C. Li, C.-W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. C. Wang, Y.-N. Wu, and D.-B. Shieh, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1642 (2007).
    [CrossRef] [PubMed]
  6. A. K. Bansal, W. Holzer, A. Penzkofer, and T. Tsuboi, Chem. Phys. 330, 118 (2006).
    [CrossRef]
  7. S. Ashkenazi, S.-W. Huang, T. Horvath, Y.-E. L. Koo, and R. Kopelman, J. Biomed. Opt. 13, 034023 (2008).
    [CrossRef] [PubMed]
  8. C. Li, T. R. Greenwood, Z. M. Bhujwalla, and K. Glunde, Org. Lett. 8, 3623 (2006).
    [CrossRef] [PubMed]
  9. I. Dunphy, S. A. Vinogradov, and D. F. Wilson, Anal. Biochem. 310, 191 (2002).
    [CrossRef] [PubMed]

2008

S. Ashkenazi, S.-W. Huang, T. Horvath, Y.-E. L. Koo, and R. Kopelman, J. Biomed. Opt. 13, 034023 (2008).
[CrossRef] [PubMed]

2007

S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 978 (2007).
[CrossRef] [PubMed]

G. Kim, S.-W. Huang, K. C. Day, M. O'Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, J. Biomed. Opt. 12, 044020 (2007).
[CrossRef] [PubMed]

P.-C. Li, C.-W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. C. Wang, Y.-N. Wu, and D.-B. Shieh, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1642 (2007).
[CrossRef] [PubMed]

2006

A. K. Bansal, W. Holzer, A. Penzkofer, and T. Tsuboi, Chem. Phys. 330, 118 (2006).
[CrossRef]

C. Li, T. R. Greenwood, Z. M. Bhujwalla, and K. Glunde, Org. Lett. 8, 3623 (2006).
[CrossRef] [PubMed]

2003

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, Nat. Biotechnol. 21, 803 (2003).
[CrossRef] [PubMed]

2002

I. Dunphy, S. A. Vinogradov, and D. F. Wilson, Anal. Biochem. 310, 191 (2002).
[CrossRef] [PubMed]

1994

A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, and F. K. Tittel, Proc. SPIE 2134A, 122 (1994).

Agayan, R. R.

G. Kim, S.-W. Huang, K. C. Day, M. O'Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, J. Biomed. Opt. 12, 044020 (2007).
[CrossRef] [PubMed]

Aglyamov, S. R.

S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 978 (2007).
[CrossRef] [PubMed]

Amirian, J. H.

S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 978 (2007).
[CrossRef] [PubMed]

Ashkenazi, S.

S. Ashkenazi, S.-W. Huang, T. Horvath, Y.-E. L. Koo, and R. Kopelman, J. Biomed. Opt. 13, 034023 (2008).
[CrossRef] [PubMed]

G. Kim, S.-W. Huang, K. C. Day, M. O'Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, J. Biomed. Opt. 12, 044020 (2007).
[CrossRef] [PubMed]

Bansal, A. K.

A. K. Bansal, W. Holzer, A. Penzkofer, and T. Tsuboi, Chem. Phys. 330, 118 (2006).
[CrossRef]

Bhujwalla, Z. M.

C. Li, T. R. Greenwood, Z. M. Bhujwalla, and K. Glunde, Org. Lett. 8, 3623 (2006).
[CrossRef] [PubMed]

Chen, C.-D.

P.-C. Li, C.-W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. C. Wang, Y.-N. Wu, and D.-B. Shieh, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1642 (2007).
[CrossRef] [PubMed]

Day, K. C.

G. Kim, S.-W. Huang, K. C. Day, M. O'Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, J. Biomed. Opt. 12, 044020 (2007).
[CrossRef] [PubMed]

Day, M. A.

G. Kim, S.-W. Huang, K. C. Day, M. O'Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, J. Biomed. Opt. 12, 044020 (2007).
[CrossRef] [PubMed]

Dunphy, I.

I. Dunphy, S. A. Vinogradov, and D. F. Wilson, Anal. Biochem. 310, 191 (2002).
[CrossRef] [PubMed]

Emelianov, S. Y.

S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 978 (2007).
[CrossRef] [PubMed]

Esenaliev, R. O.

A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, and F. K. Tittel, Proc. SPIE 2134A, 122 (1994).

Glunde, K.

C. Li, T. R. Greenwood, Z. M. Bhujwalla, and K. Glunde, Org. Lett. 8, 3623 (2006).
[CrossRef] [PubMed]

Greenwood, T. R.

C. Li, T. R. Greenwood, Z. M. Bhujwalla, and K. Glunde, Org. Lett. 8, 3623 (2006).
[CrossRef] [PubMed]

Holzer, W.

A. K. Bansal, W. Holzer, A. Penzkofer, and T. Tsuboi, Chem. Phys. 330, 118 (2006).
[CrossRef]

Horvath, T.

S. Ashkenazi, S.-W. Huang, T. Horvath, Y.-E. L. Koo, and R. Kopelman, J. Biomed. Opt. 13, 034023 (2008).
[CrossRef] [PubMed]

Huang, S.-W.

S. Ashkenazi, S.-W. Huang, T. Horvath, Y.-E. L. Koo, and R. Kopelman, J. Biomed. Opt. 13, 034023 (2008).
[CrossRef] [PubMed]

G. Kim, S.-W. Huang, K. C. Day, M. O'Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, J. Biomed. Opt. 12, 044020 (2007).
[CrossRef] [PubMed]

Jacques, S. L.

A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, and F. K. Tittel, Proc. SPIE 2134A, 122 (1994).

Kim, G.

G. Kim, S.-W. Huang, K. C. Day, M. O'Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, J. Biomed. Opt. 12, 044020 (2007).
[CrossRef] [PubMed]

Koo, Y.-E. L.

S. Ashkenazi, S.-W. Huang, T. Horvath, Y.-E. L. Koo, and R. Kopelman, J. Biomed. Opt. 13, 034023 (2008).
[CrossRef] [PubMed]

Kopelman, R.

S. Ashkenazi, S.-W. Huang, T. Horvath, Y.-E. L. Koo, and R. Kopelman, J. Biomed. Opt. 13, 034023 (2008).
[CrossRef] [PubMed]

G. Kim, S.-W. Huang, K. C. Day, M. O'Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, J. Biomed. Opt. 12, 044020 (2007).
[CrossRef] [PubMed]

Ku, G.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, Nat. Biotechnol. 21, 803 (2003).
[CrossRef] [PubMed]

Li, C.

C. Li, T. R. Greenwood, Z. M. Bhujwalla, and K. Glunde, Org. Lett. 8, 3623 (2006).
[CrossRef] [PubMed]

Li, P.-C.

P.-C. Li, C.-W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. C. Wang, Y.-N. Wu, and D.-B. Shieh, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1642 (2007).
[CrossRef] [PubMed]

Liao, C.-K.

P.-C. Li, C.-W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. C. Wang, Y.-N. Wu, and D.-B. Shieh, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1642 (2007).
[CrossRef] [PubMed]

O'Donnell, M.

G. Kim, S.-W. Huang, K. C. Day, M. O'Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, J. Biomed. Opt. 12, 044020 (2007).
[CrossRef] [PubMed]

Oraevsky, A. A.

A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, and F. K. Tittel, Proc. SPIE 2134A, 122 (1994).

Pang, Y.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, Nat. Biotechnol. 21, 803 (2003).
[CrossRef] [PubMed]

Pao, K.-C.

P.-C. Li, C.-W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. C. Wang, Y.-N. Wu, and D.-B. Shieh, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1642 (2007).
[CrossRef] [PubMed]

Penzkofer, A.

A. K. Bansal, W. Holzer, A. Penzkofer, and T. Tsuboi, Chem. Phys. 330, 118 (2006).
[CrossRef]

Sethuraman, S.

S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 978 (2007).
[CrossRef] [PubMed]

Shieh, D.-B.

P.-C. Li, C.-W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. C. Wang, Y.-N. Wu, and D.-B. Shieh, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1642 (2007).
[CrossRef] [PubMed]

Smalling, R. W.

S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 978 (2007).
[CrossRef] [PubMed]

Stoica, G.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, Nat. Biotechnol. 21, 803 (2003).
[CrossRef] [PubMed]

Tittel, F. K.

A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, and F. K. Tittel, Proc. SPIE 2134A, 122 (1994).

Tsuboi, T.

A. K. Bansal, W. Holzer, A. Penzkofer, and T. Tsuboi, Chem. Phys. 330, 118 (2006).
[CrossRef]

Vinogradov, S. A.

I. Dunphy, S. A. Vinogradov, and D. F. Wilson, Anal. Biochem. 310, 191 (2002).
[CrossRef] [PubMed]

Wang, C.-R. C.

P.-C. Li, C.-W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. C. Wang, Y.-N. Wu, and D.-B. Shieh, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1642 (2007).
[CrossRef] [PubMed]

Wang, L. V.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, Nat. Biotechnol. 21, 803 (2003).
[CrossRef] [PubMed]

Wang, X.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, Nat. Biotechnol. 21, 803 (2003).
[CrossRef] [PubMed]

Wei, C.-W.

P.-C. Li, C.-W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. C. Wang, Y.-N. Wu, and D.-B. Shieh, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1642 (2007).
[CrossRef] [PubMed]

Wilson, D. F.

I. Dunphy, S. A. Vinogradov, and D. F. Wilson, Anal. Biochem. 310, 191 (2002).
[CrossRef] [PubMed]

Wu, Y.-N.

P.-C. Li, C.-W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. C. Wang, Y.-N. Wu, and D.-B. Shieh, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1642 (2007).
[CrossRef] [PubMed]

Xie, X.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, Nat. Biotechnol. 21, 803 (2003).
[CrossRef] [PubMed]

Anal. Biochem.

I. Dunphy, S. A. Vinogradov, and D. F. Wilson, Anal. Biochem. 310, 191 (2002).
[CrossRef] [PubMed]

Chem. Phys.

A. K. Bansal, W. Holzer, A. Penzkofer, and T. Tsuboi, Chem. Phys. 330, 118 (2006).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control

P.-C. Li, C.-W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. C. Wang, Y.-N. Wu, and D.-B. Shieh, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1642 (2007).
[CrossRef] [PubMed]

S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 978 (2007).
[CrossRef] [PubMed]

J. Biomed. Opt.

G. Kim, S.-W. Huang, K. C. Day, M. O'Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, J. Biomed. Opt. 12, 044020 (2007).
[CrossRef] [PubMed]

S. Ashkenazi, S.-W. Huang, T. Horvath, Y.-E. L. Koo, and R. Kopelman, J. Biomed. Opt. 13, 034023 (2008).
[CrossRef] [PubMed]

Nat. Biotechnol.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, Nat. Biotechnol. 21, 803 (2003).
[CrossRef] [PubMed]

Org. Lett.

C. Li, T. R. Greenwood, Z. M. Bhujwalla, and K. Glunde, Org. Lett. 8, 3623 (2006).
[CrossRef] [PubMed]

Proc. SPIE

A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, and F. K. Tittel, Proc. SPIE 2134A, 122 (1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Principle of contrast enhancement in DAPA imaging.

Fig. 2
Fig. 2

Experimental setup for DAPA measurement and imaging. UT, OPO, and BS, stand for ultrasound transducer, optical parametric oscillator, and beam splitter, respectively. The mirrors create a 10 ns propagation delay between the probe and pump beams. The two beams are merged to illuminate objects under interrogation in a water tank. A digitizer records PA signals received by the ultrasound transducer after amplification.

Fig. 3
Fig. 3

Comparison of PA signals from a mixture of toluene and ethanol flowing in a tube with no PtOEP (dotted traces) and with 30 μ M PtOEP (solid traces) as the solute: (a) only pump beam on, (b) only probe beam on, (c) both beams on, (d) DAPA signals.

Fig. 4
Fig. 4

Cross-sectional PA images of two parallel tubes with 30 μ M PtOEP and 29 μ M IR-783 solutions flowing in the upper right and lower left, respectively. The numbers in these images are normalized peak values within the tubes. The vertical axes represent distance from the linear transducer array.

Fig. 5
Fig. 5

DAPA signal level versus pump fluence. According to these data, the absorption cross section of PtOEP at 532 nm is 2.0 × 10 16 cm 2 . (b) PA signal level versus probe fluence. The pump fluence was 3.9 mJ cm 2 . The concentrations of PtOEP and IR-783 were 30 and 3.1 μ M , respectively. By comparing the slopes of the fitted lines, the transient absorption cross section of PtOEP at 760 nm was estimated as 5.7 × 10 17 cm 2 .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

μ 1 = n σ a , prb , 1 { 1 exp I pmp σ a , pmp ( h ν pmp ) } ,

Metrics