Abstract

We report a radially polarized coherent anti-Stokes Raman scattering (RP-CARS) microscopy for facilitating longitudinally oriented molecules detection. We observe that under tight focusing of radially polarized pump and Stokes light fields with a high-NA objective, RP-CARS radiation from molecules oriented along the longitudinal direction is approximately threefold stronger than that using linearly polarized CARS (LP-CARS) technique. The lateral resolution of RP-CARS imaging can be improved by about 10% compared to the LP-CARS imaging. We demonstrate this RP-CARS technique by imaging the sectioned cottonwood leaf vascular bundles.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
    [CrossRef]
  2. A. Volkmer, J. Phys. D 38, R59 (2005).
    [CrossRef]
  3. M. Müller and A. Zumbusch, ChemPhysChem 8, 2156 (2007).
    [CrossRef] [PubMed]
  4. F. Lu, W. Zheng, C. Sheppard, and Z. Huang, Opt. Lett. 33, 602 (2008).
    [CrossRef] [PubMed]
  5. C. L. Evans and X. S. Xie, Annu. Rev. Anal. Chem. 1, 883 (2008).
    [CrossRef]
  6. E. O. Potma and X. S. Xie, J. Raman Spectrosc. 34, 642 (2003).
    [CrossRef]
  7. G. W. H. Wurpel, H. A. Rinia, and M. Müller, J. Microsc. 218, 37 (2005).
    [CrossRef] [PubMed]
  8. A. P. Kennedy, J. Sutcliffe, and J. Cheng, Langmuir 21, 6478 (2005).
    [CrossRef] [PubMed]
  9. Q. Zhan, Adv. Opt. Photon. 1, 1 (2009).
    [CrossRef]
  10. R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
    [CrossRef] [PubMed]
  11. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
    [CrossRef] [PubMed]
  12. K. Yoshiki, K. Ryosuke, M. Hashimoto, N. Hashimoto, and T. Araki, Opt. Lett. 32, 1680 (2007).
    [CrossRef] [PubMed]
  13. K. S. Youngworth and T. G. Brown, Opt. Express 7, 77 (2000).
    [CrossRef] [PubMed]
  14. M. Stalder and M. Schadt, Opt. Lett. 21, 1948 (1996).
    [CrossRef] [PubMed]
  15. B. Jia, X. Gan, and M. Gu, Opt. Express 13, 6821 (2005).
    [CrossRef] [PubMed]

2009 (1)

2008 (2)

2007 (2)

2005 (4)

B. Jia, X. Gan, and M. Gu, Opt. Express 13, 6821 (2005).
[CrossRef] [PubMed]

A. Volkmer, J. Phys. D 38, R59 (2005).
[CrossRef]

G. W. H. Wurpel, H. A. Rinia, and M. Müller, J. Microsc. 218, 37 (2005).
[CrossRef] [PubMed]

A. P. Kennedy, J. Sutcliffe, and J. Cheng, Langmuir 21, 6478 (2005).
[CrossRef] [PubMed]

2003 (2)

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

E. O. Potma and X. S. Xie, J. Raman Spectrosc. 34, 642 (2003).
[CrossRef]

2001 (1)

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef] [PubMed]

2000 (1)

1999 (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
[CrossRef]

1996 (1)

Araki, T.

Beversluis, M. R.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef] [PubMed]

Brown, T. G.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef] [PubMed]

K. S. Youngworth and T. G. Brown, Opt. Express 7, 77 (2000).
[CrossRef] [PubMed]

Cheng, J.

A. P. Kennedy, J. Sutcliffe, and J. Cheng, Langmuir 21, 6478 (2005).
[CrossRef] [PubMed]

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Evans, C. L.

C. L. Evans and X. S. Xie, Annu. Rev. Anal. Chem. 1, 883 (2008).
[CrossRef]

Gan, X.

Gu, M.

Hashimoto, M.

Hashimoto, N.

Holtom, G. R.

A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
[CrossRef]

Huang, Z.

Jia, B.

Kennedy, A. P.

A. P. Kennedy, J. Sutcliffe, and J. Cheng, Langmuir 21, 6478 (2005).
[CrossRef] [PubMed]

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Lu, F.

Müller, M.

M. Müller and A. Zumbusch, ChemPhysChem 8, 2156 (2007).
[CrossRef] [PubMed]

G. W. H. Wurpel, H. A. Rinia, and M. Müller, J. Microsc. 218, 37 (2005).
[CrossRef] [PubMed]

Novotny, L.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef] [PubMed]

Potma, E. O.

E. O. Potma and X. S. Xie, J. Raman Spectrosc. 34, 642 (2003).
[CrossRef]

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Rinia, H. A.

G. W. H. Wurpel, H. A. Rinia, and M. Müller, J. Microsc. 218, 37 (2005).
[CrossRef] [PubMed]

Ryosuke, K.

Schadt, M.

Sheppard, C.

Stalder, M.

Sutcliffe, J.

A. P. Kennedy, J. Sutcliffe, and J. Cheng, Langmuir 21, 6478 (2005).
[CrossRef] [PubMed]

Volkmer, A.

A. Volkmer, J. Phys. D 38, R59 (2005).
[CrossRef]

Wurpel, G. W. H.

G. W. H. Wurpel, H. A. Rinia, and M. Müller, J. Microsc. 218, 37 (2005).
[CrossRef] [PubMed]

Xie, X. S.

C. L. Evans and X. S. Xie, Annu. Rev. Anal. Chem. 1, 883 (2008).
[CrossRef]

E. O. Potma and X. S. Xie, J. Raman Spectrosc. 34, 642 (2003).
[CrossRef]

A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
[CrossRef]

Yoshiki, K.

Youngworth, K. S.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef] [PubMed]

K. S. Youngworth and T. G. Brown, Opt. Express 7, 77 (2000).
[CrossRef] [PubMed]

Zhan, Q.

Zheng, W.

Zumbusch, A.

M. Müller and A. Zumbusch, ChemPhysChem 8, 2156 (2007).
[CrossRef] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
[CrossRef]

Adv. Opt. Photon. (1)

Annu. Rev. Anal. Chem. (1)

C. L. Evans and X. S. Xie, Annu. Rev. Anal. Chem. 1, 883 (2008).
[CrossRef]

ChemPhysChem (1)

M. Müller and A. Zumbusch, ChemPhysChem 8, 2156 (2007).
[CrossRef] [PubMed]

J. Microsc. (1)

G. W. H. Wurpel, H. A. Rinia, and M. Müller, J. Microsc. 218, 37 (2005).
[CrossRef] [PubMed]

J. Phys. D (1)

A. Volkmer, J. Phys. D 38, R59 (2005).
[CrossRef]

J. Raman Spectrosc. (1)

E. O. Potma and X. S. Xie, J. Raman Spectrosc. 34, 642 (2003).
[CrossRef]

Langmuir (1)

A. P. Kennedy, J. Sutcliffe, and J. Cheng, Langmuir 21, 6478 (2005).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. Lett. (3)

A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
[CrossRef]

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Calculated intensity distributions of the longitudinal ( I z ) and the transverse ( I tr ) components on the focal plane of the objective for the radially polarized pump and the Stokes light fields. (b) Comparison of the calculated intensity distributions of RP-CARS and LP-CARS on the focal plane of the objective. Note that in intensity distribution computations [Eqs. (1a, 1b, 2, 3, 4, 5)], NA of the water immersion objective is assumed to be 1.2, and the pump, the Stokes and the CARS fields are centered at 832, 1096, and 670 nm, respectively. RP-CARS, radially polarized CARS; LP-CARS, linearly polarized CARS.

Fig. 2
Fig. 2

Schematic of the radially polarized CARS microscope developed. Radially polarized pump and Stokes light fields are generated by passing the linearly polarized pump and Stokes beams through the liquid-crystal-based radial polarization converters and then collinearly coupled into a laser scanning confocal microscope for CARS imaging. RPC, radial polarization converter; DM, dichroic mirror; L, lens; M, mirror; MO, microscope objective; F, filter set; PMT, photomultiplier tube; p, pump beam; s, Stokes beam.

Fig. 3
Fig. 3

(a) Radially polarized CARS image and (b) the LP-CARS image on the 20 μ m thick cottonwood leaf vascular bundles sectioned perpendicularly to the vein fibers. (c) Comparison of the corresponding intensity profiles across the lines indicated in images (a) and (b), respectively. (d) The RP-CARS image and (e) the LP-CARS image on the 20 μ m thick cottonwood leaf vascular bundles sectioned parallel to the vein fibers. (f) Comparison of the corresponding intensity profiles across the lines indicated in images (d) and (e), respectively. The C-H stretch vibration centered at 2900 cm 1 ( FWHM 150 cm 1 ) is used for CARS imaging. The average powers of the pump (832 nm) and the Stokes (1096 nm) beams on the samples are 4 and 2 mW, respectively.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E z ( ρ , z ) = 2 i A 0 α P ( θ ) cos 1 / 2 ( θ ) sin 2 ( θ ) J 0 ( k ρ   sin   θ ) exp ( i k z   cos   θ ) d θ ,
E tr ( ρ , z ) = A 0 α P ( θ ) cos 1 / 2 ( θ ) sin ( 2 θ ) J 1 ( k ρ   sin   θ ) exp ( i k z   cos   θ ) d θ ,
P ( θ ) = J 1 ( 2 β 0   sin   θ / sin   α ) exp ( β 0 2 sin 2 θ / sin 2 α ) ,
E a s ( j ) i N ( ε p ( j ) μ g e ( i ) ) ( ε s ( j ) μ e v ( i ) ) ( ε p ( j ) μ v e ( i ) ) ( ε a s ( j ) μ e g ( i ) ) χ 1111 ( 3 ) E p ( j ) E p ( j ) E s ( j ) ,
E a s ( j ) i N cos 4 ( φ ) χ 1111 ( 3 ) E p ( j ) E p ( j ) E s ( j ) ,
I a s | E a s ( j ) | 2 cos 8 φ .

Metrics