Abstract

A circle of planar nanoholes in a dielectric thin film can focus light into a sub-half-wavelength spot. The nanostructure with higher rotational symmetry shows better focusing properties. From finite-difference time-domain calculations, we verified such a focusing spot coming from the constructive interference of diffraction beams near the nanoholes. For a 1μm size lens with eight 200nm diameter holes, we achieved an optical spot smaller than 250nm measured at 650nm wavelength. This nanostructure provides a simple way to massively fabricate a planar lens array with a scale down to the submicrometer level.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Biehl, R. Danzebrink, P. Oliveira, and M. A. Aegerter, J. Sol-Gel Sci. Technol. 13, 177 (1998).
    [CrossRef]
  2. M. H. Wu, C. Park, and G. M. Whitesides, Langmuir 18, 9312 (2002).
    [CrossRef]
  3. E. Bonaccurso, H.-J. Butt, B. Hankeln, B. Niesenhaus, and K. Graf, Appl. Phys. Lett. 86, 1 (2005).
    [CrossRef]
  4. H. Yabu and M. Shimomura, Langmuir 21, 1709 (2005).
    [CrossRef] [PubMed]
  5. Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, Nano Lett. 5, 1726 (2005).
    [CrossRef] [PubMed]
  6. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, Science 297, 820 (2002).
    [CrossRef] [PubMed]
  7. P. K. Wei, H. L. Chou, and Y. C. Chen, Opt. Lett. 29, 433 (2004).
    [CrossRef] [PubMed]
  8. W. L. Chang, Y. J. Chang, P. H. Tsao, and P. K. Wei, Appl. Phys. Lett. 88, 101109 (2006).
    [CrossRef]
  9. P. K. Wei, H. L. Chou, and W. L. Chang, J. Opt. Soc. Am. B 20, 1503 (2003).
    [CrossRef]
  10. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Science 272, 85 (1996).
    [CrossRef]

2006 (1)

W. L. Chang, Y. J. Chang, P. H. Tsao, and P. K. Wei, Appl. Phys. Lett. 88, 101109 (2006).
[CrossRef]

2005 (3)

E. Bonaccurso, H.-J. Butt, B. Hankeln, B. Niesenhaus, and K. Graf, Appl. Phys. Lett. 86, 1 (2005).
[CrossRef]

H. Yabu and M. Shimomura, Langmuir 21, 1709 (2005).
[CrossRef] [PubMed]

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, Nano Lett. 5, 1726 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (1)

2002 (2)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, Science 297, 820 (2002).
[CrossRef] [PubMed]

M. H. Wu, C. Park, and G. M. Whitesides, Langmuir 18, 9312 (2002).
[CrossRef]

1998 (1)

S. Biehl, R. Danzebrink, P. Oliveira, and M. A. Aegerter, J. Sol-Gel Sci. Technol. 13, 177 (1998).
[CrossRef]

1996 (1)

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Science 272, 85 (1996).
[CrossRef]

Aegerter, M. A.

S. Biehl, R. Danzebrink, P. Oliveira, and M. A. Aegerter, J. Sol-Gel Sci. Technol. 13, 177 (1998).
[CrossRef]

Biehl, S.

S. Biehl, R. Danzebrink, P. Oliveira, and M. A. Aegerter, J. Sol-Gel Sci. Technol. 13, 177 (1998).
[CrossRef]

Bonaccurso, E.

E. Bonaccurso, H.-J. Butt, B. Hankeln, B. Niesenhaus, and K. Graf, Appl. Phys. Lett. 86, 1 (2005).
[CrossRef]

Butt, H.-J.

E. Bonaccurso, H.-J. Butt, B. Hankeln, B. Niesenhaus, and K. Graf, Appl. Phys. Lett. 86, 1 (2005).
[CrossRef]

Chang, W. L.

W. L. Chang, Y. J. Chang, P. H. Tsao, and P. K. Wei, Appl. Phys. Lett. 88, 101109 (2006).
[CrossRef]

P. K. Wei, H. L. Chou, and W. L. Chang, J. Opt. Soc. Am. B 20, 1503 (2003).
[CrossRef]

Chang, Y. J.

W. L. Chang, Y. J. Chang, P. H. Tsao, and P. K. Wei, Appl. Phys. Lett. 88, 101109 (2006).
[CrossRef]

Chen, Y. C.

Chou, H. L.

Chou, S. Y.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Science 272, 85 (1996).
[CrossRef]

Danzebrink, R.

S. Biehl, R. Danzebrink, P. Oliveira, and M. A. Aegerter, J. Sol-Gel Sci. Technol. 13, 177 (1998).
[CrossRef]

Degiron, A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, Science 297, 820 (2002).
[CrossRef] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, Science 297, 820 (2002).
[CrossRef] [PubMed]

Ebbesen, T. W.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, Science 297, 820 (2002).
[CrossRef] [PubMed]

García-Vidal, F. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, Science 297, 820 (2002).
[CrossRef] [PubMed]

Graf, K.

E. Bonaccurso, H.-J. Butt, B. Hankeln, B. Niesenhaus, and K. Graf, Appl. Phys. Lett. 86, 1 (2005).
[CrossRef]

Hankeln, B.

E. Bonaccurso, H.-J. Butt, B. Hankeln, B. Niesenhaus, and K. Graf, Appl. Phys. Lett. 86, 1 (2005).
[CrossRef]

Krauss, P. R.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Science 272, 85 (1996).
[CrossRef]

Lezec, H. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, Science 297, 820 (2002).
[CrossRef] [PubMed]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, Science 297, 820 (2002).
[CrossRef] [PubMed]

Liu, Z. W.

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, Nano Lett. 5, 1726 (2005).
[CrossRef] [PubMed]

Martín-Moreno, L.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, Science 297, 820 (2002).
[CrossRef] [PubMed]

Niesenhaus, B.

E. Bonaccurso, H.-J. Butt, B. Hankeln, B. Niesenhaus, and K. Graf, Appl. Phys. Lett. 86, 1 (2005).
[CrossRef]

Oliveira, P.

S. Biehl, R. Danzebrink, P. Oliveira, and M. A. Aegerter, J. Sol-Gel Sci. Technol. 13, 177 (1998).
[CrossRef]

Park, C.

M. H. Wu, C. Park, and G. M. Whitesides, Langmuir 18, 9312 (2002).
[CrossRef]

Pikus, Y.

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, Nano Lett. 5, 1726 (2005).
[CrossRef] [PubMed]

Renstrom, P. J.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Science 272, 85 (1996).
[CrossRef]

Shimomura, M.

H. Yabu and M. Shimomura, Langmuir 21, 1709 (2005).
[CrossRef] [PubMed]

Srituravanich, W.

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, Nano Lett. 5, 1726 (2005).
[CrossRef] [PubMed]

Steele, J. M.

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, Nano Lett. 5, 1726 (2005).
[CrossRef] [PubMed]

Sun, C.

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, Nano Lett. 5, 1726 (2005).
[CrossRef] [PubMed]

Tsao, P. H.

W. L. Chang, Y. J. Chang, P. H. Tsao, and P. K. Wei, Appl. Phys. Lett. 88, 101109 (2006).
[CrossRef]

Wei, P. K.

Whitesides, G. M.

M. H. Wu, C. Park, and G. M. Whitesides, Langmuir 18, 9312 (2002).
[CrossRef]

Wu, M. H.

M. H. Wu, C. Park, and G. M. Whitesides, Langmuir 18, 9312 (2002).
[CrossRef]

Yabu, H.

H. Yabu and M. Shimomura, Langmuir 21, 1709 (2005).
[CrossRef] [PubMed]

Zhang, X.

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, Nano Lett. 5, 1726 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

E. Bonaccurso, H.-J. Butt, B. Hankeln, B. Niesenhaus, and K. Graf, Appl. Phys. Lett. 86, 1 (2005).
[CrossRef]

W. L. Chang, Y. J. Chang, P. H. Tsao, and P. K. Wei, Appl. Phys. Lett. 88, 101109 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Sol-Gel Sci. Technol. (1)

S. Biehl, R. Danzebrink, P. Oliveira, and M. A. Aegerter, J. Sol-Gel Sci. Technol. 13, 177 (1998).
[CrossRef]

Langmuir (2)

M. H. Wu, C. Park, and G. M. Whitesides, Langmuir 18, 9312 (2002).
[CrossRef]

H. Yabu and M. Shimomura, Langmuir 21, 1709 (2005).
[CrossRef] [PubMed]

Nano Lett. (1)

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, Nano Lett. 5, 1726 (2005).
[CrossRef] [PubMed]

Opt. Lett. (1)

Science (2)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, Science 297, 820 (2002).
[CrossRef] [PubMed]

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Science 272, 85 (1996).
[CrossRef]

Supplementary Material (1)

» Media 1: MOV (415 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a)–(c) Left, SEM images of the different planar lenses on the PMMA film. The lenses consisted of (a) four, (b) six, and (c) eight nanoholes arranged at the periphery of a circle. The arrows show the directions of diffraction beams. Right, calculated optical fields for a plane wave propagating through the planar microlens. The incident wavelength was 600 nm . The optical field is monitored at the lens surface at the xy plane. The scale bar is 1 μ m . (d) Left, parameters for the optical near-field calculations. Right, optical near-field distribution for different lens size (Media 1). The line indicates the positions of the lens surface and holes.

Fig. 2
Fig. 2

CCD images of focusing spots in different microlens arrays: (a) fourfold structure, (b) sixfold structure, (c) eightfold structure, and (d) ring structure. The images were taken by using a 100× objective lens (NA = 0.85). The incident wavelength was 600 nm . The insets show the enlarged pictures. The scale bar is 5 μ m .

Fig. 3
Fig. 3

(a) Intensity profiles of the CCD images in Fig. 2. (b) Statistic results of spot sizes and optical contrasts measured at different wavelengths.

Fig. 4
Fig. 4

(a) Topographic image of an array of eight-hole structures. (b) NSOM image measured at the PMMA surface. There is a tiny spot located at the center of the lens. (c) Near-field intensity profile of Fig. 4b. (d) NSOM image measured at 500 nm away from the PMMA surface.

Metrics