Abstract

A prototype device capable of splitting an x-ray pulse into two adjustable fractions, delaying one of them with the aim to perform x-ray photon correlation spectroscopy and pump–probe type studies, was designed, manufactured, and tested. The device utilizes eight perfect silicon crystals in vertical 90° scattering geometry. Its performance has been verified with 8.39keV synchrotron radiation. The measured throughput of the device with a Si(333) premonochromator at 8.39keV under ambient conditions is 0.6%. Time delays up to 2.62ns have been achieved, detected with a time resolution of 16.7ps.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Grübel and F. Zontone, J. Alloys Compd. 362, 3 (2004).
    [CrossRef]
  2. http://xfel.desy.de/.
  3. http://www-ssrl.slac.stanford.edu/lcls/science.html.
  4. R. Mitzner, M. Neeb, T. Noll, N. Pontius, and W. Eberhardt, Proc. SPIE 5920, 86 (2005).
  5. Technical Design Report, Part V, G.Materlik and Th.Tschentscher, eds. (DESY, 2001).
  6. http://ssrl.slac.stanford.edu/lcls/cdr/.
  7. S. Joksch, W. Graeff, J. Hastings, and D. P. Siddons, Rev. Sci. Instrum. 63, 1114 (1992).
    [CrossRef]
  8. G. Grübel, G. B. Stephenson, C. Gutt, H. Sinn, and Th. Tschentscher, Nucl. Instrum. Methods Phys. Res. B 262, 357 (2007).
    [CrossRef]
  9. B. W. Batterman and H. Cole, Rev. Mod. Phys. 36, 681 (1964).
    [CrossRef]
  10. R. J. Dejus and M. S. del Rio, Proc. SPIE 3152, 148 (1997).
    [CrossRef]
  11. O. Seeck, HASYLAB Annual Report (HASYLAB, 2006), pp. 333-336.
  12. S. Kishimoto, Rev. Sci. Instrum. 63, 824 (1992).
    [CrossRef]
  13. T. Kato, S. Omachi, and H. Aso, Lect. Notes Comput. Sci. 2396, 405 (2002).
    [CrossRef]

2007 (1)

G. Grübel, G. B. Stephenson, C. Gutt, H. Sinn, and Th. Tschentscher, Nucl. Instrum. Methods Phys. Res. B 262, 357 (2007).
[CrossRef]

2006 (1)

O. Seeck, HASYLAB Annual Report (HASYLAB, 2006), pp. 333-336.

2005 (1)

R. Mitzner, M. Neeb, T. Noll, N. Pontius, and W. Eberhardt, Proc. SPIE 5920, 86 (2005).

2004 (1)

G. Grübel and F. Zontone, J. Alloys Compd. 362, 3 (2004).
[CrossRef]

2002 (1)

T. Kato, S. Omachi, and H. Aso, Lect. Notes Comput. Sci. 2396, 405 (2002).
[CrossRef]

2001 (1)

Technical Design Report, Part V, G.Materlik and Th.Tschentscher, eds. (DESY, 2001).

1997 (1)

R. J. Dejus and M. S. del Rio, Proc. SPIE 3152, 148 (1997).
[CrossRef]

1992 (2)

S. Kishimoto, Rev. Sci. Instrum. 63, 824 (1992).
[CrossRef]

S. Joksch, W. Graeff, J. Hastings, and D. P. Siddons, Rev. Sci. Instrum. 63, 1114 (1992).
[CrossRef]

1964 (1)

B. W. Batterman and H. Cole, Rev. Mod. Phys. 36, 681 (1964).
[CrossRef]

Aso, H.

T. Kato, S. Omachi, and H. Aso, Lect. Notes Comput. Sci. 2396, 405 (2002).
[CrossRef]

Batterman, B. W.

B. W. Batterman and H. Cole, Rev. Mod. Phys. 36, 681 (1964).
[CrossRef]

Cole, H.

B. W. Batterman and H. Cole, Rev. Mod. Phys. 36, 681 (1964).
[CrossRef]

Dejus, R. J.

R. J. Dejus and M. S. del Rio, Proc. SPIE 3152, 148 (1997).
[CrossRef]

del Rio, M. S.

R. J. Dejus and M. S. del Rio, Proc. SPIE 3152, 148 (1997).
[CrossRef]

Eberhardt, W.

R. Mitzner, M. Neeb, T. Noll, N. Pontius, and W. Eberhardt, Proc. SPIE 5920, 86 (2005).

Graeff, W.

S. Joksch, W. Graeff, J. Hastings, and D. P. Siddons, Rev. Sci. Instrum. 63, 1114 (1992).
[CrossRef]

Grübel, G.

G. Grübel, G. B. Stephenson, C. Gutt, H. Sinn, and Th. Tschentscher, Nucl. Instrum. Methods Phys. Res. B 262, 357 (2007).
[CrossRef]

G. Grübel and F. Zontone, J. Alloys Compd. 362, 3 (2004).
[CrossRef]

Gutt, C.

G. Grübel, G. B. Stephenson, C. Gutt, H. Sinn, and Th. Tschentscher, Nucl. Instrum. Methods Phys. Res. B 262, 357 (2007).
[CrossRef]

Hastings, J.

S. Joksch, W. Graeff, J. Hastings, and D. P. Siddons, Rev. Sci. Instrum. 63, 1114 (1992).
[CrossRef]

Joksch, S.

S. Joksch, W. Graeff, J. Hastings, and D. P. Siddons, Rev. Sci. Instrum. 63, 1114 (1992).
[CrossRef]

Kato, T.

T. Kato, S. Omachi, and H. Aso, Lect. Notes Comput. Sci. 2396, 405 (2002).
[CrossRef]

Kishimoto, S.

S. Kishimoto, Rev. Sci. Instrum. 63, 824 (1992).
[CrossRef]

Mitzner, R.

R. Mitzner, M. Neeb, T. Noll, N. Pontius, and W. Eberhardt, Proc. SPIE 5920, 86 (2005).

Neeb, M.

R. Mitzner, M. Neeb, T. Noll, N. Pontius, and W. Eberhardt, Proc. SPIE 5920, 86 (2005).

Noll, T.

R. Mitzner, M. Neeb, T. Noll, N. Pontius, and W. Eberhardt, Proc. SPIE 5920, 86 (2005).

Omachi, S.

T. Kato, S. Omachi, and H. Aso, Lect. Notes Comput. Sci. 2396, 405 (2002).
[CrossRef]

Pontius, N.

R. Mitzner, M. Neeb, T. Noll, N. Pontius, and W. Eberhardt, Proc. SPIE 5920, 86 (2005).

Seeck, O.

O. Seeck, HASYLAB Annual Report (HASYLAB, 2006), pp. 333-336.

Siddons, D. P.

S. Joksch, W. Graeff, J. Hastings, and D. P. Siddons, Rev. Sci. Instrum. 63, 1114 (1992).
[CrossRef]

Sinn, H.

G. Grübel, G. B. Stephenson, C. Gutt, H. Sinn, and Th. Tschentscher, Nucl. Instrum. Methods Phys. Res. B 262, 357 (2007).
[CrossRef]

Stephenson, G. B.

G. Grübel, G. B. Stephenson, C. Gutt, H. Sinn, and Th. Tschentscher, Nucl. Instrum. Methods Phys. Res. B 262, 357 (2007).
[CrossRef]

Tschentscher, Th.

G. Grübel, G. B. Stephenson, C. Gutt, H. Sinn, and Th. Tschentscher, Nucl. Instrum. Methods Phys. Res. B 262, 357 (2007).
[CrossRef]

Zontone, F.

G. Grübel and F. Zontone, J. Alloys Compd. 362, 3 (2004).
[CrossRef]

J. Alloys Compd. (1)

G. Grübel and F. Zontone, J. Alloys Compd. 362, 3 (2004).
[CrossRef]

Lect. Notes Comput. Sci. (1)

T. Kato, S. Omachi, and H. Aso, Lect. Notes Comput. Sci. 2396, 405 (2002).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B (1)

G. Grübel, G. B. Stephenson, C. Gutt, H. Sinn, and Th. Tschentscher, Nucl. Instrum. Methods Phys. Res. B 262, 357 (2007).
[CrossRef]

Proc. SPIE (2)

R. J. Dejus and M. S. del Rio, Proc. SPIE 3152, 148 (1997).
[CrossRef]

R. Mitzner, M. Neeb, T. Noll, N. Pontius, and W. Eberhardt, Proc. SPIE 5920, 86 (2005).

Rev. Mod. Phys. (1)

B. W. Batterman and H. Cole, Rev. Mod. Phys. 36, 681 (1964).
[CrossRef]

Rev. Sci. Instrum. (2)

S. Joksch, W. Graeff, J. Hastings, and D. P. Siddons, Rev. Sci. Instrum. 63, 1114 (1992).
[CrossRef]

S. Kishimoto, Rev. Sci. Instrum. 63, 824 (1992).
[CrossRef]

Other (5)

O. Seeck, HASYLAB Annual Report (HASYLAB, 2006), pp. 333-336.

Technical Design Report, Part V, G.Materlik and Th.Tschentscher, eds. (DESY, 2001).

http://ssrl.slac.stanford.edu/lcls/cdr/.

http://xfel.desy.de/.

http://www-ssrl.slac.stanford.edu/lcls/science.html.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Basic concept of the x-ray delay line. Eight optical components arranged in 90° scattering scheme. BR-I, BR-II, BR-III, BR-IV, BR-V, BR-VI, Bragg reflectors; BS, beam splitter, BM, beam mixer. L 1 , L 2 , L 3 , path lengths inside the delay line. Inset, angular mismatch Δ Θ between the two exit beam paths for Laue–Bragg optics.

Fig. 2
Fig. 2

Three-dimensional model of the delay line. 1, 2, 4, 7, 10, 11, Bragg reflector stages; 3, beam splitter stage; 9, beam mixer stage; 5, aluminum plate; 6, granite support. The x-ray beam path is denoted by a gray (yellow online) line.

Fig. 3
Fig. 3

Time patterns measured as a function of path length difference Δ L between the two branches of the delay line. Inset, time patterns recorded when either the upper [gray curve (red online)] or the lower [black curve (blue online)] branch of the delay line was blocked.

Fig. 4
Fig. 4

Left axis, measured delay time τ m versus path-length difference Δ L . Negative values of τ m and Δ L denote inversed photon pulse arrival times. The solid line is the linear fit to the data. Right axis, difference between the set and measured delay time Δ t s .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

τ c = Δ L c .

Metrics