Abstract

We apply high-order harmonic generation to sensitive measurements of the molecular rotational temperature in a thin supersonic gas beam. The method uses nonresonant pump and probe femtosecond laser pulses to generate harmonic radiation from coherently rotating molecules. The rotational temperature of molecules can be derived accurately with high spatial and temporal resolutions from the Fourier spectrum of time-dependent signals. The validity of this method was tested for an expanding flow of an N2 beam with a rapid temperature decrease. The results show the versatile applicability of this method.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, e.g., Atomic and Molecular Beam Methods, G.Scoles, ed. (Oxford U., 1988).
  2. P. Huber-Wälchli, D. M. Guthals, and J. W. Nibler, Chem. Phys. Lett. 67, 233 (1979).
    [CrossRef]
  3. M. D. Duncan, P. Österlin, and R. L. Byer, Opt. Lett. 6, 90 (1981).
    [CrossRef] [PubMed]
  4. T. Lang, K.-L. Kompa, and M. Motzkus, Chem. Phys. Lett. 310, 65 (1999).
    [CrossRef]
  5. T. Lang, M. Motzkus, H. M. Frey, and P. Beaud, J. Chem. Phys. 115, 5418 (2001).
    [CrossRef]
  6. T. Hornung, H. Skenderović, K.-L. Kompa, and M. Motzkus, J. Raman Spectrosc. 35, 934 (2004).
    [CrossRef]
  7. M. Kaku, K. Masuda, and K. Miyazaki, Jpn. J. Appl. Phys. 43, L591 (2004).
    [CrossRef]
  8. K. Miyazaki, M. Kaku, G. Miyaji, A. Abdurrouf, and F. H. M. Faisal, Phys. Rev. Lett. 95, 243903 (2005).
    [CrossRef] [PubMed]
  9. K. Yoshii, G. Miyaji, and K. Miyazaki, Phys. Rev. Lett. 101, 183902 (2008).
    [CrossRef] [PubMed]
  10. F. H. M. Faisal, A. Abdurrouf, K. Miyazaki, and G. Miyaji, Phys. Rev. Lett. 98, 143001 (2007).
    [CrossRef] [PubMed]
  11. F. H. M. Faisal and A. Abdurrouf, Phys. Rev. Lett. 100, 123005 (2008).
    [CrossRef] [PubMed]
  12. In producing the frequency spectrum of the observed time-dependent signal, we ignore the initial rapid change at Δt≈0 that is induced by the high intensity of superimposed pump and probe pulses .
  13. R. J. Gallagher and J. B. Fenn, J. Chem. Phys. 60, 3487 (1974).
    [CrossRef]
  14. D. R. Miller, in Atomic and Molecular Beam Methods, G.Scoles, ed. (Oxford U., 1988), pp. 14-53.
  15. H.-D. Barth, F. Huisken, and A. A. Ilyukhin, Appl. Phys. B 52, 84 (1991).
    [CrossRef]
  16. H.-D. Barth and F. Huisken, Chem. Phys. Lett. 169, 198 (1990).
    [CrossRef]
  17. F. Huisken and T. Pertsch, Appl. Phys. B 41, 173 (1986).
    [CrossRef]
  18. K. Miyazaki, T. Shimizu, and D. Normand, J. Phys. B 37, 753 (2004).
    [CrossRef]

2008 (2)

K. Yoshii, G. Miyaji, and K. Miyazaki, Phys. Rev. Lett. 101, 183902 (2008).
[CrossRef] [PubMed]

F. H. M. Faisal and A. Abdurrouf, Phys. Rev. Lett. 100, 123005 (2008).
[CrossRef] [PubMed]

2007 (1)

F. H. M. Faisal, A. Abdurrouf, K. Miyazaki, and G. Miyaji, Phys. Rev. Lett. 98, 143001 (2007).
[CrossRef] [PubMed]

2005 (1)

K. Miyazaki, M. Kaku, G. Miyaji, A. Abdurrouf, and F. H. M. Faisal, Phys. Rev. Lett. 95, 243903 (2005).
[CrossRef] [PubMed]

2004 (3)

K. Miyazaki, T. Shimizu, and D. Normand, J. Phys. B 37, 753 (2004).
[CrossRef]

T. Hornung, H. Skenderović, K.-L. Kompa, and M. Motzkus, J. Raman Spectrosc. 35, 934 (2004).
[CrossRef]

M. Kaku, K. Masuda, and K. Miyazaki, Jpn. J. Appl. Phys. 43, L591 (2004).
[CrossRef]

2001 (1)

T. Lang, M. Motzkus, H. M. Frey, and P. Beaud, J. Chem. Phys. 115, 5418 (2001).
[CrossRef]

1999 (1)

T. Lang, K.-L. Kompa, and M. Motzkus, Chem. Phys. Lett. 310, 65 (1999).
[CrossRef]

1991 (1)

H.-D. Barth, F. Huisken, and A. A. Ilyukhin, Appl. Phys. B 52, 84 (1991).
[CrossRef]

1990 (1)

H.-D. Barth and F. Huisken, Chem. Phys. Lett. 169, 198 (1990).
[CrossRef]

1986 (1)

F. Huisken and T. Pertsch, Appl. Phys. B 41, 173 (1986).
[CrossRef]

1981 (1)

1979 (1)

P. Huber-Wälchli, D. M. Guthals, and J. W. Nibler, Chem. Phys. Lett. 67, 233 (1979).
[CrossRef]

1974 (1)

R. J. Gallagher and J. B. Fenn, J. Chem. Phys. 60, 3487 (1974).
[CrossRef]

Abdurrouf, A.

F. H. M. Faisal and A. Abdurrouf, Phys. Rev. Lett. 100, 123005 (2008).
[CrossRef] [PubMed]

F. H. M. Faisal, A. Abdurrouf, K. Miyazaki, and G. Miyaji, Phys. Rev. Lett. 98, 143001 (2007).
[CrossRef] [PubMed]

K. Miyazaki, M. Kaku, G. Miyaji, A. Abdurrouf, and F. H. M. Faisal, Phys. Rev. Lett. 95, 243903 (2005).
[CrossRef] [PubMed]

Barth, H.-D.

H.-D. Barth, F. Huisken, and A. A. Ilyukhin, Appl. Phys. B 52, 84 (1991).
[CrossRef]

H.-D. Barth and F. Huisken, Chem. Phys. Lett. 169, 198 (1990).
[CrossRef]

Beaud, P.

T. Lang, M. Motzkus, H. M. Frey, and P. Beaud, J. Chem. Phys. 115, 5418 (2001).
[CrossRef]

Byer, R. L.

Duncan, M. D.

Faisal, F. H. M.

F. H. M. Faisal and A. Abdurrouf, Phys. Rev. Lett. 100, 123005 (2008).
[CrossRef] [PubMed]

F. H. M. Faisal, A. Abdurrouf, K. Miyazaki, and G. Miyaji, Phys. Rev. Lett. 98, 143001 (2007).
[CrossRef] [PubMed]

K. Miyazaki, M. Kaku, G. Miyaji, A. Abdurrouf, and F. H. M. Faisal, Phys. Rev. Lett. 95, 243903 (2005).
[CrossRef] [PubMed]

Fenn, J. B.

R. J. Gallagher and J. B. Fenn, J. Chem. Phys. 60, 3487 (1974).
[CrossRef]

Frey, H. M.

T. Lang, M. Motzkus, H. M. Frey, and P. Beaud, J. Chem. Phys. 115, 5418 (2001).
[CrossRef]

Gallagher, R. J.

R. J. Gallagher and J. B. Fenn, J. Chem. Phys. 60, 3487 (1974).
[CrossRef]

Guthals, D. M.

P. Huber-Wälchli, D. M. Guthals, and J. W. Nibler, Chem. Phys. Lett. 67, 233 (1979).
[CrossRef]

Hornung, T.

T. Hornung, H. Skenderović, K.-L. Kompa, and M. Motzkus, J. Raman Spectrosc. 35, 934 (2004).
[CrossRef]

Huber-Wälchli, P.

P. Huber-Wälchli, D. M. Guthals, and J. W. Nibler, Chem. Phys. Lett. 67, 233 (1979).
[CrossRef]

Huisken, F.

H.-D. Barth, F. Huisken, and A. A. Ilyukhin, Appl. Phys. B 52, 84 (1991).
[CrossRef]

H.-D. Barth and F. Huisken, Chem. Phys. Lett. 169, 198 (1990).
[CrossRef]

F. Huisken and T. Pertsch, Appl. Phys. B 41, 173 (1986).
[CrossRef]

Ilyukhin, A. A.

H.-D. Barth, F. Huisken, and A. A. Ilyukhin, Appl. Phys. B 52, 84 (1991).
[CrossRef]

Kaku, M.

K. Miyazaki, M. Kaku, G. Miyaji, A. Abdurrouf, and F. H. M. Faisal, Phys. Rev. Lett. 95, 243903 (2005).
[CrossRef] [PubMed]

M. Kaku, K. Masuda, and K. Miyazaki, Jpn. J. Appl. Phys. 43, L591 (2004).
[CrossRef]

Kompa, K.-L.

T. Hornung, H. Skenderović, K.-L. Kompa, and M. Motzkus, J. Raman Spectrosc. 35, 934 (2004).
[CrossRef]

T. Lang, K.-L. Kompa, and M. Motzkus, Chem. Phys. Lett. 310, 65 (1999).
[CrossRef]

Lang, T.

T. Lang, M. Motzkus, H. M. Frey, and P. Beaud, J. Chem. Phys. 115, 5418 (2001).
[CrossRef]

T. Lang, K.-L. Kompa, and M. Motzkus, Chem. Phys. Lett. 310, 65 (1999).
[CrossRef]

Masuda, K.

M. Kaku, K. Masuda, and K. Miyazaki, Jpn. J. Appl. Phys. 43, L591 (2004).
[CrossRef]

Miller, D. R.

D. R. Miller, in Atomic and Molecular Beam Methods, G.Scoles, ed. (Oxford U., 1988), pp. 14-53.

Miyaji, G.

K. Yoshii, G. Miyaji, and K. Miyazaki, Phys. Rev. Lett. 101, 183902 (2008).
[CrossRef] [PubMed]

F. H. M. Faisal, A. Abdurrouf, K. Miyazaki, and G. Miyaji, Phys. Rev. Lett. 98, 143001 (2007).
[CrossRef] [PubMed]

K. Miyazaki, M. Kaku, G. Miyaji, A. Abdurrouf, and F. H. M. Faisal, Phys. Rev. Lett. 95, 243903 (2005).
[CrossRef] [PubMed]

Miyazaki, K.

K. Yoshii, G. Miyaji, and K. Miyazaki, Phys. Rev. Lett. 101, 183902 (2008).
[CrossRef] [PubMed]

F. H. M. Faisal, A. Abdurrouf, K. Miyazaki, and G. Miyaji, Phys. Rev. Lett. 98, 143001 (2007).
[CrossRef] [PubMed]

K. Miyazaki, M. Kaku, G. Miyaji, A. Abdurrouf, and F. H. M. Faisal, Phys. Rev. Lett. 95, 243903 (2005).
[CrossRef] [PubMed]

M. Kaku, K. Masuda, and K. Miyazaki, Jpn. J. Appl. Phys. 43, L591 (2004).
[CrossRef]

K. Miyazaki, T. Shimizu, and D. Normand, J. Phys. B 37, 753 (2004).
[CrossRef]

Motzkus, M.

T. Hornung, H. Skenderović, K.-L. Kompa, and M. Motzkus, J. Raman Spectrosc. 35, 934 (2004).
[CrossRef]

T. Lang, M. Motzkus, H. M. Frey, and P. Beaud, J. Chem. Phys. 115, 5418 (2001).
[CrossRef]

T. Lang, K.-L. Kompa, and M. Motzkus, Chem. Phys. Lett. 310, 65 (1999).
[CrossRef]

Nibler, J. W.

P. Huber-Wälchli, D. M. Guthals, and J. W. Nibler, Chem. Phys. Lett. 67, 233 (1979).
[CrossRef]

Normand, D.

K. Miyazaki, T. Shimizu, and D. Normand, J. Phys. B 37, 753 (2004).
[CrossRef]

Österlin, P.

Pertsch, T.

F. Huisken and T. Pertsch, Appl. Phys. B 41, 173 (1986).
[CrossRef]

Shimizu, T.

K. Miyazaki, T. Shimizu, and D. Normand, J. Phys. B 37, 753 (2004).
[CrossRef]

Skenderovic, H.

T. Hornung, H. Skenderović, K.-L. Kompa, and M. Motzkus, J. Raman Spectrosc. 35, 934 (2004).
[CrossRef]

Yoshii, K.

K. Yoshii, G. Miyaji, and K. Miyazaki, Phys. Rev. Lett. 101, 183902 (2008).
[CrossRef] [PubMed]

Appl. Phys. B (2)

H.-D. Barth, F. Huisken, and A. A. Ilyukhin, Appl. Phys. B 52, 84 (1991).
[CrossRef]

F. Huisken and T. Pertsch, Appl. Phys. B 41, 173 (1986).
[CrossRef]

Chem. Phys. Lett. (3)

P. Huber-Wälchli, D. M. Guthals, and J. W. Nibler, Chem. Phys. Lett. 67, 233 (1979).
[CrossRef]

H.-D. Barth and F. Huisken, Chem. Phys. Lett. 169, 198 (1990).
[CrossRef]

T. Lang, K.-L. Kompa, and M. Motzkus, Chem. Phys. Lett. 310, 65 (1999).
[CrossRef]

J. Chem. Phys. (2)

T. Lang, M. Motzkus, H. M. Frey, and P. Beaud, J. Chem. Phys. 115, 5418 (2001).
[CrossRef]

R. J. Gallagher and J. B. Fenn, J. Chem. Phys. 60, 3487 (1974).
[CrossRef]

J. Phys. B (1)

K. Miyazaki, T. Shimizu, and D. Normand, J. Phys. B 37, 753 (2004).
[CrossRef]

J. Raman Spectrosc. (1)

T. Hornung, H. Skenderović, K.-L. Kompa, and M. Motzkus, J. Raman Spectrosc. 35, 934 (2004).
[CrossRef]

Jpn. J. Appl. Phys. (1)

M. Kaku, K. Masuda, and K. Miyazaki, Jpn. J. Appl. Phys. 43, L591 (2004).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (4)

K. Miyazaki, M. Kaku, G. Miyaji, A. Abdurrouf, and F. H. M. Faisal, Phys. Rev. Lett. 95, 243903 (2005).
[CrossRef] [PubMed]

K. Yoshii, G. Miyaji, and K. Miyazaki, Phys. Rev. Lett. 101, 183902 (2008).
[CrossRef] [PubMed]

F. H. M. Faisal, A. Abdurrouf, K. Miyazaki, and G. Miyaji, Phys. Rev. Lett. 98, 143001 (2007).
[CrossRef] [PubMed]

F. H. M. Faisal and A. Abdurrouf, Phys. Rev. Lett. 100, 123005 (2008).
[CrossRef] [PubMed]

Other (3)

In producing the frequency spectrum of the observed time-dependent signal, we ignore the initial rapid change at Δt≈0 that is induced by the high intensity of superimposed pump and probe pulses .

See, e.g., Atomic and Molecular Beam Methods, G.Scoles, ed. (Oxford U., 1988).

D. R. Miller, in Atomic and Molecular Beam Methods, G.Scoles, ed. (Oxford U., 1988), pp. 14-53.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Time-dependent 19th harmonic signals observed at x D = 0.1 for P 0 = 1 atm (upper) and calculated (lower) for T rot = 110 K and (b) their frequency spectra. The inset in (b) indicates the rotational distribution at T rot = 110 K . The pump and probe intensities used in the experiment and calculation are 0.75 and 2.2 × 10 14 W cm 2 , respectively.

Fig. 2
Fig. 2

(a) Time-dependent 19th harmonic signals observed at x D = 1.5 for P 0 = 9 atm (upper) and calculated (lower) for T rot = 20 K and (b) their frequency spectra. The inset indicates the rotational state distribution at T rot = 20 K . The pump and probe intensities are the same as in Fig. 1.

Fig. 3
Fig. 3

Rotational temperature in the supersonic N 2 gas jet measured as a function of the distance x D from the nozzle for different source pressures.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S ( n ) ( Δ t ) c 1 + c 2 cos 2 θ ( Δ t ) + c 3 cos 2 θ 2 ( Δ t ) + c 4 cos 4 θ ( Δ t ) + ,

Metrics