Abstract

We study the effect of rotation on the propagation of electromagnetic waves in optical microcoil resonator structures. It is shown that the combination of slow-light and conventional propagation mechanisms leads to an enhancement of orders of magnitudes of the Sagnac phase shift and can be used for the realization of highly compact optical rotation sensors and gyroscopes.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Sumetsky, Opt. Express 12, 2303 (2004).
    [CrossRef] [PubMed]
  2. M. Sumetsky, Opt. Express 13, 4331 (2005).
    [CrossRef] [PubMed]
  3. N. G. Broderick, Opt. Express 16, 16247 (2008).
    [CrossRef] [PubMed]
  4. M. Sumetsky, J. Lightwave Technol. 26, 21 (2008).
    [CrossRef]
  5. F. Xu and G. Brambilla, IEEE Photonics Technol. Lett. 19, 1481 (2007).
    [CrossRef]
  6. F. Xu and G. Brambilla, Opt. Lett. 32, 2164 (2007).
    [CrossRef] [PubMed]
  7. U. Leonhardt and P. Piwnitski, Phys. Rev. A 62, 055801 (2000).
    [CrossRef]
  8. B. Z. Steinberg, Phys. Rev. E 71, 056621 (2005).
    [CrossRef]
  9. J. Scheuer and A. Yariv, Phys. Rev. Lett. 96, 053901 (2006).
    [CrossRef] [PubMed]
  10. A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, and L. Maleki, Opt. Commun. 233, 107 (2004).
    [CrossRef]
  11. B. Z. Steinberg, J. Scheuer, and A. Boag, J. Opt. Soc. Am. B 24, 1216 (2007).
    [CrossRef]
  12. J. Scheuer, Opt. Express 15, 15053 (2007).
    [CrossRef] [PubMed]
  13. B. Z. Steinberg and A. Boag, J. Opt. Soc. Am. B 24, 142 (2007).
    [CrossRef]
  14. S. Sunada and T. Harayama, Phys. Rev. A 74, 021801(R) (2006).
    [CrossRef]
  15. B. Z. Steinberg, A. Boag, and R. Lisitsin, J. Opt. Soc. Am. A 20, 138 (2003).
    [CrossRef]
  16. S. Mookherjea, Opt. Lett. 32, 289 (2007).
    [CrossRef] [PubMed]

2008

2007

2006

J. Scheuer and A. Yariv, Phys. Rev. Lett. 96, 053901 (2006).
[CrossRef] [PubMed]

S. Sunada and T. Harayama, Phys. Rev. A 74, 021801(R) (2006).
[CrossRef]

2005

B. Z. Steinberg, Phys. Rev. E 71, 056621 (2005).
[CrossRef]

M. Sumetsky, Opt. Express 13, 4331 (2005).
[CrossRef] [PubMed]

2004

M. Sumetsky, Opt. Express 12, 2303 (2004).
[CrossRef] [PubMed]

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, and L. Maleki, Opt. Commun. 233, 107 (2004).
[CrossRef]

2003

2000

U. Leonhardt and P. Piwnitski, Phys. Rev. A 62, 055801 (2000).
[CrossRef]

Boag, A.

Brambilla, G.

F. Xu and G. Brambilla, Opt. Lett. 32, 2164 (2007).
[CrossRef] [PubMed]

F. Xu and G. Brambilla, IEEE Photonics Technol. Lett. 19, 1481 (2007).
[CrossRef]

Broderick, N. G.

Harayama, T.

S. Sunada and T. Harayama, Phys. Rev. A 74, 021801(R) (2006).
[CrossRef]

Ilchenko, V. S.

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, and L. Maleki, Opt. Commun. 233, 107 (2004).
[CrossRef]

Leonhardt, U.

U. Leonhardt and P. Piwnitski, Phys. Rev. A 62, 055801 (2000).
[CrossRef]

Lisitsin, R.

Maleki, L.

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, and L. Maleki, Opt. Commun. 233, 107 (2004).
[CrossRef]

Matsko, A. B.

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, and L. Maleki, Opt. Commun. 233, 107 (2004).
[CrossRef]

Mookherjea, S.

Piwnitski, P.

U. Leonhardt and P. Piwnitski, Phys. Rev. A 62, 055801 (2000).
[CrossRef]

Savchenkov, A. A.

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, and L. Maleki, Opt. Commun. 233, 107 (2004).
[CrossRef]

Scheuer, J.

Steinberg, B. Z.

Sumetsky, M.

Sunada, S.

S. Sunada and T. Harayama, Phys. Rev. A 74, 021801(R) (2006).
[CrossRef]

Xu, F.

F. Xu and G. Brambilla, IEEE Photonics Technol. Lett. 19, 1481 (2007).
[CrossRef]

F. Xu and G. Brambilla, Opt. Lett. 32, 2164 (2007).
[CrossRef] [PubMed]

Yariv, A.

J. Scheuer and A. Yariv, Phys. Rev. Lett. 96, 053901 (2006).
[CrossRef] [PubMed]

IEEE Photonics Technol. Lett.

F. Xu and G. Brambilla, IEEE Photonics Technol. Lett. 19, 1481 (2007).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Opt. Commun.

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, and L. Maleki, Opt. Commun. 233, 107 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

S. Sunada and T. Harayama, Phys. Rev. A 74, 021801(R) (2006).
[CrossRef]

U. Leonhardt and P. Piwnitski, Phys. Rev. A 62, 055801 (2000).
[CrossRef]

Phys. Rev. E

B. Z. Steinberg, Phys. Rev. E 71, 056621 (2005).
[CrossRef]

Phys. Rev. Lett.

J. Scheuer and A. Yariv, Phys. Rev. Lett. 96, 053901 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of an MOG.

Fig. 2
Fig. 2

Typical (a) amplitude and (b) phase transfer function of an OMR: S = 1 mm , N = 7 , n eff = 1.45 , and κ = 1.6 × 10 3 1 μ m for a lossless structure (dashed line) and for a realistic structure with α = 0.02 dB mm (solid curve).

Fig. 3
Fig. 3

Rotation-detection sensitivity enhancement of an MOG: S = 1 mm , N = 7 , and n eff = 1.45 with various coupling coefficients.

Fig. 4
Fig. 4

(a) Dependence of the sensitivity enhancement (for the best wavelength) on κ, α = 0 , N = 5 (the rest of the parameters are the same as in Fig. 3). Inset, zoom in of one of the high sensitivity regions. (b) Dependence of the sensitivity enhancement on the loss for κ = 8.55 × 10 4 1 μ m . (c) Dependence of the sensitivity enhancement on N.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

A r 2 = E in 2 cos 2 ( 1 2 Δ φ ) , B r 2 = E in 2 sin 2 ( 1 2 Δ φ ) ,
d A 1 d s = i κ A 2 d A m d s = i κ ( A m 1 + A m + 1 ) d A N d s = i κ A N 1 ,
E m ( s ) = l = 1 N A l sin ( m l π N + 1 ) exp [ 2 i κ cos ( l π N + 1 ) s ] m , l = 1... N ,
l = 1 N M ̂ m l A l = [ 1 0 0 0 ] T .
M ̂ m l = sin ( m l π N + 1 ) sin ( ( m 1 ) l π N + 1 ) exp { i [ β 2 κ cos ( l π N + 1 ) ] S } .
n eff 2 = n 0 2 ± Ω S n 0 π c ,

Metrics