Abstract

A white-light spectral interferometric technique is used to retrieve a relative spectral phase and group delay of a multilayer mirror from the spectral interferograms recorded in a dispersive Michelson interferometer. The phase retrieval is based on the use of a windowed Fourier transform in the wavelength domain, and characterization of the multilayer mirror is completed by a three-step measurement of the reflectance spectrum of the mirror in the same interferometer.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. H. Knox, N. M. Pearson, K. D. Li, and C. A. Hirlimann, Opt. Lett. 13, 574 (1988).
    [CrossRef] [PubMed]
  2. M. Beck and I. A. Walmsley, Opt. Lett. 15, 492 (1990).
    [CrossRef] [PubMed]
  3. S. Diddams and J. C. Diels, J. Opt. Soc. Am. B 13, 1120 (1995).
    [CrossRef]
  4. A. P. Kovacs, K. Osvay, Z. Bor, and R. Szipocs, Opt. Lett. 20, 788 (1995).
    [CrossRef] [PubMed]
  5. T. D. Noe, Appl. Opt. 41, 3183 (2002).
    [CrossRef] [PubMed]
  6. K. Ogawa, Appl. Opt. 45, 6718 (2006).
    [CrossRef] [PubMed]
  7. P. Hlubina, D. Ciprian, J. Luňáček, and M. Lesňák, Opt. Express 14, 7678 (2006).
    [CrossRef] [PubMed]
  8. P. Hlubina, J. Luňáček, D. Ciprian, and R. Chlebus, Opt. Commun. 281, 2349 (2008).
    [CrossRef]
  9. P. Hlubina, J. Luňáček, D. Ciprian, and R. Chlebus, Appl. Phys. B 92, 203 (2008).
    [CrossRef]
  10. E. Palik, Handbook of Optical Constants of Solids (Academic, 1985) Vol. I.
  11. D. Reolon, M. Jacquot, I. Verrier, G. Brun, and C. Veillas, Opt. Express 14, 12744 (2006).
    [CrossRef] [PubMed]

2008 (2)

P. Hlubina, J. Luňáček, D. Ciprian, and R. Chlebus, Opt. Commun. 281, 2349 (2008).
[CrossRef]

P. Hlubina, J. Luňáček, D. Ciprian, and R. Chlebus, Appl. Phys. B 92, 203 (2008).
[CrossRef]

2006 (3)

2002 (1)

1995 (2)

1990 (1)

1988 (1)

Beck, M.

Bor, Z.

Brun, G.

Chlebus, R.

P. Hlubina, J. Luňáček, D. Ciprian, and R. Chlebus, Opt. Commun. 281, 2349 (2008).
[CrossRef]

P. Hlubina, J. Luňáček, D. Ciprian, and R. Chlebus, Appl. Phys. B 92, 203 (2008).
[CrossRef]

Ciprian, D.

P. Hlubina, J. Luňáček, D. Ciprian, and R. Chlebus, Opt. Commun. 281, 2349 (2008).
[CrossRef]

P. Hlubina, J. Luňáček, D. Ciprian, and R. Chlebus, Appl. Phys. B 92, 203 (2008).
[CrossRef]

P. Hlubina, D. Ciprian, J. Luňáček, and M. Lesňák, Opt. Express 14, 7678 (2006).
[CrossRef] [PubMed]

Diddams, S.

Diels, J. C.

Hirlimann, C. A.

Hlubina, P.

P. Hlubina, J. Luňáček, D. Ciprian, and R. Chlebus, Appl. Phys. B 92, 203 (2008).
[CrossRef]

P. Hlubina, J. Luňáček, D. Ciprian, and R. Chlebus, Opt. Commun. 281, 2349 (2008).
[CrossRef]

P. Hlubina, D. Ciprian, J. Luňáček, and M. Lesňák, Opt. Express 14, 7678 (2006).
[CrossRef] [PubMed]

Jacquot, M.

Knox, W. H.

Kovacs, A. P.

Lesnák, M.

Li, K. D.

Lunácek, J.

P. Hlubina, J. Luňáček, D. Ciprian, and R. Chlebus, Opt. Commun. 281, 2349 (2008).
[CrossRef]

P. Hlubina, J. Luňáček, D. Ciprian, and R. Chlebus, Appl. Phys. B 92, 203 (2008).
[CrossRef]

P. Hlubina, D. Ciprian, J. Luňáček, and M. Lesňák, Opt. Express 14, 7678 (2006).
[CrossRef] [PubMed]

Noe, T. D.

Ogawa, K.

Osvay, K.

Palik, E.

E. Palik, Handbook of Optical Constants of Solids (Academic, 1985) Vol. I.

Pearson, N. M.

Reolon, D.

Szipocs, R.

Veillas, C.

Verrier, I.

Walmsley, I. A.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup with a Michelson interferometer to measure a multilayer mirror.

Fig. 2
Fig. 2

Background spectrum and channeled spectrum recorded for a multilayer mirror in the setup shown in Fig. 1.

Fig. 3
Fig. 3

Retrieved relative spectral phase and measured reflectance spectrum of a multilayer mirror.

Fig. 4
Fig. 4

Retrieved group delay and measured reflectance spectrum of a multilayer mirror.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

r ( λ ) = R ( λ ) exp [ i δ r ( λ ) ] ,
Δ ( λ ) = 2 L + 2 n ( λ ) t eff { λ [ δ r ( λ ) δ 2 ( λ ) ] } ( 2 π ) ,
δ ( λ ) = ( 2 π λ ) [ 2 L 0 + 2 n ( λ ) t eff Δ ( λ ) ] + δ 2 ( λ ) .
R ( λ ) = I meas ( λ ) I bkg ( λ ) I ref ( λ ) I bkg ( λ ) R ref ( λ ) ,

Metrics