Abstract

Linear-core-array microstructured fibers are fabricated using the modified chemical-vapor desposition and etching method for preparing each core performs, and two D-shape large-scale silica rods are also used in the linear-core-array fiber perform stacking. The supermodes in optical fibers with linearly distributed 23 cores are investigated by using the coupled-mode theory. The coupling field propagation characteristics of the optical fibers are analyzed. The linear-core-array fiber could be used in improving the high-power fiber laser-beam shape, enhancing its quality.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. K. Cheo, A. Liu, and G. G. King, IEEE Photon. Technol. Lett. 13, 439 (2001).
    [CrossRef]
  2. E. J. Bochove, P. K. Cheo, and G. G. King, Opt. Lett. 28, 1200 (2003).
    [CrossRef] [PubMed]
  3. Y. Huo, P. K. Cheo, and G. G. King, Opt. Express 12, 6230 (2004).
    [CrossRef] [PubMed]
  4. Y. Huo and P. K. Cheo, IEEE Photon. Technol. Lett. 16, 759 (2004).
    [CrossRef]
  5. Y. Huo and P. K. Cheo, J. Opt. Soc. Am. B 22, 2345 (2005).
    [CrossRef]
  6. M. Wrage, P. Glas, D. Fischer, M. Leitner, N. N. Elkin, D. V. Vysotsky, A. P. Napartovich, and V. N. Troshchieva, Opt. Commun. 205, 367 (2002).
    [CrossRef]
  7. L. Michaille, C. R. Bennett, D. M. Taylor, and T. J. Shepherd, Proc. SPIE 6102, 61020W (2006).
    [CrossRef]
  8. N. Kishi, E. Yamashita, and H. Kawabata, J. Lightwave Technol. 7, 902 (1989).
    [CrossRef]
  9. N. Kishi and E. Yamashita, IEEE Trans. Microwave Theory Tech. 36, 1961 (1988).
    [CrossRef]

2006 (1)

L. Michaille, C. R. Bennett, D. M. Taylor, and T. J. Shepherd, Proc. SPIE 6102, 61020W (2006).
[CrossRef]

2005 (1)

2004 (2)

Y. Huo, P. K. Cheo, and G. G. King, Opt. Express 12, 6230 (2004).
[CrossRef] [PubMed]

Y. Huo and P. K. Cheo, IEEE Photon. Technol. Lett. 16, 759 (2004).
[CrossRef]

2003 (1)

2002 (1)

M. Wrage, P. Glas, D. Fischer, M. Leitner, N. N. Elkin, D. V. Vysotsky, A. P. Napartovich, and V. N. Troshchieva, Opt. Commun. 205, 367 (2002).
[CrossRef]

2001 (1)

P. K. Cheo, A. Liu, and G. G. King, IEEE Photon. Technol. Lett. 13, 439 (2001).
[CrossRef]

1989 (1)

N. Kishi, E. Yamashita, and H. Kawabata, J. Lightwave Technol. 7, 902 (1989).
[CrossRef]

1988 (1)

N. Kishi and E. Yamashita, IEEE Trans. Microwave Theory Tech. 36, 1961 (1988).
[CrossRef]

Bennett, C. R.

L. Michaille, C. R. Bennett, D. M. Taylor, and T. J. Shepherd, Proc. SPIE 6102, 61020W (2006).
[CrossRef]

Bochove, E. J.

Cheo, P. K.

Elkin, N. N.

M. Wrage, P. Glas, D. Fischer, M. Leitner, N. N. Elkin, D. V. Vysotsky, A. P. Napartovich, and V. N. Troshchieva, Opt. Commun. 205, 367 (2002).
[CrossRef]

Fischer, D.

M. Wrage, P. Glas, D. Fischer, M. Leitner, N. N. Elkin, D. V. Vysotsky, A. P. Napartovich, and V. N. Troshchieva, Opt. Commun. 205, 367 (2002).
[CrossRef]

Glas, P.

M. Wrage, P. Glas, D. Fischer, M. Leitner, N. N. Elkin, D. V. Vysotsky, A. P. Napartovich, and V. N. Troshchieva, Opt. Commun. 205, 367 (2002).
[CrossRef]

Huo, Y.

Kawabata, H.

N. Kishi, E. Yamashita, and H. Kawabata, J. Lightwave Technol. 7, 902 (1989).
[CrossRef]

King, G. G.

Kishi, N.

N. Kishi, E. Yamashita, and H. Kawabata, J. Lightwave Technol. 7, 902 (1989).
[CrossRef]

N. Kishi and E. Yamashita, IEEE Trans. Microwave Theory Tech. 36, 1961 (1988).
[CrossRef]

Leitner, M.

M. Wrage, P. Glas, D. Fischer, M. Leitner, N. N. Elkin, D. V. Vysotsky, A. P. Napartovich, and V. N. Troshchieva, Opt. Commun. 205, 367 (2002).
[CrossRef]

Liu, A.

P. K. Cheo, A. Liu, and G. G. King, IEEE Photon. Technol. Lett. 13, 439 (2001).
[CrossRef]

Michaille, L.

L. Michaille, C. R. Bennett, D. M. Taylor, and T. J. Shepherd, Proc. SPIE 6102, 61020W (2006).
[CrossRef]

Napartovich, A. P.

M. Wrage, P. Glas, D. Fischer, M. Leitner, N. N. Elkin, D. V. Vysotsky, A. P. Napartovich, and V. N. Troshchieva, Opt. Commun. 205, 367 (2002).
[CrossRef]

Shepherd, T. J.

L. Michaille, C. R. Bennett, D. M. Taylor, and T. J. Shepherd, Proc. SPIE 6102, 61020W (2006).
[CrossRef]

Taylor, D. M.

L. Michaille, C. R. Bennett, D. M. Taylor, and T. J. Shepherd, Proc. SPIE 6102, 61020W (2006).
[CrossRef]

Troshchieva, V. N.

M. Wrage, P. Glas, D. Fischer, M. Leitner, N. N. Elkin, D. V. Vysotsky, A. P. Napartovich, and V. N. Troshchieva, Opt. Commun. 205, 367 (2002).
[CrossRef]

Vysotsky, D. V.

M. Wrage, P. Glas, D. Fischer, M. Leitner, N. N. Elkin, D. V. Vysotsky, A. P. Napartovich, and V. N. Troshchieva, Opt. Commun. 205, 367 (2002).
[CrossRef]

Wrage, M.

M. Wrage, P. Glas, D. Fischer, M. Leitner, N. N. Elkin, D. V. Vysotsky, A. P. Napartovich, and V. N. Troshchieva, Opt. Commun. 205, 367 (2002).
[CrossRef]

Yamashita, E.

N. Kishi, E. Yamashita, and H. Kawabata, J. Lightwave Technol. 7, 902 (1989).
[CrossRef]

N. Kishi and E. Yamashita, IEEE Trans. Microwave Theory Tech. 36, 1961 (1988).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

Y. Huo and P. K. Cheo, IEEE Photon. Technol. Lett. 16, 759 (2004).
[CrossRef]

P. K. Cheo, A. Liu, and G. G. King, IEEE Photon. Technol. Lett. 13, 439 (2001).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

N. Kishi and E. Yamashita, IEEE Trans. Microwave Theory Tech. 36, 1961 (1988).
[CrossRef]

J. Lightwave Technol. (1)

N. Kishi, E. Yamashita, and H. Kawabata, J. Lightwave Technol. 7, 902 (1989).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

M. Wrage, P. Glas, D. Fischer, M. Leitner, N. N. Elkin, D. V. Vysotsky, A. P. Napartovich, and V. N. Troshchieva, Opt. Commun. 205, 367 (2002).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (1)

L. Michaille, C. R. Bennett, D. M. Taylor, and T. J. Shepherd, Proc. SPIE 6102, 61020W (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Cross section and (b) refractive index profile of the linear-core-array microstructured fiber.

Fig. 2
Fig. 2

Manufactured 23-core linear array fiber.

Fig. 3
Fig. 3

Direct splicing with a single-mode fiber and the reshaped laser output optical field.

Fig. 4
Fig. 4

Reshaped output far field of the linear-core-array fiber end.

Fig. 5
Fig. 5

Normalized power in each core versus the propagation length. The 12th core is excited in the 23-core fiber.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d d z [ a 1 ( z ) a 2 ( z ) a 3 ( z ) a 4 ( z ) a 2 3 ( z ) ] = j β m [ a 1 ( z ) a 2 ( z ) a 3 ( z ) a 4 ( z ) a 2 3 ( z ) ] = j [ β 0 κ κ β 0 κ 0 κ β 0 κ 0 κ β 0 κ κ β 0 ] [ a 1 ( z ) a 2 ( z ) a 3 ( z ) a 4 ( z ) a 2 3 ( z ) ] ,
a m ( x , y , z ) = [ i a i m a i ( x , y ) ] e j β m z ,
a ( x , y ) = 2 π 1 ω 0 e ( x 2 + y 2 ω 0 2 ) ,
e i ( z ) = 2 n + 1 e j β 0 z m = 1 n sin m l π n + 1 sin m i π n + 1 e j κ z cos [ m π ( n + 1 ) ] .
P i ( z ) = e i ( z ) e i * ( z ) .

Metrics