Abstract

We report for the first time (to our knowledge) the experimental achievement of a single-frequency ring-laser gyroscope using a diode-pumped half-vertical-cavity semiconductor-emitting laser structure as a gain medium. Thanks to the control of mode competition by an active feedback loop, we observe a beat signal from recombined beams that has a frequency proportional to the rotation rate as predicted by the Sagnac effect. This promising result opens new perspectives for rotation sensing.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. F. Jezierski and P. J. R. Laybourn, Proc. IEEE 145, 17 (1988).
  2. R. M. Jopson, G. Eisenstein, M. S. Whalen, K. L. Hall, U. Koren, and J. R. Simpson, Appl. Phys. Lett. 48, 204 (1986).
    [CrossRef]
  3. G. Sagnac, C. R. Acad. Sci. Ser. 157, 708 (1913).
  4. F. Aronowitz, in Laser Applications I (Academic, 1971).
  5. K. Taguchi, K. Fukushima, A. Ishitani, and M. Ikeda, Measurement 27, 251 (2000).
    [CrossRef]
  6. S. Tamura, K. Inagaki, H. Noto, and T. Harayama, Proc. SPIE 6770, 677014 (2007).
    [CrossRef]
  7. P. J. R. Laybourn, M. Sorel, G. Giuliani, and S. Donati, Proc. SPIE 3620, 322 (1999).
    [CrossRef]
  8. M. Kuznetzov, F. Hakimi, R. Sprague, and A. Mooradian, IEEE J. Sel. Top. Quantum Electron. 5, 561 (1999).
    [CrossRef]
  9. A. Siegman, Lasers (University Science Books, 1986).
  10. S. Schwartz, G. Feugnet, P. Bouyet, E. Larionstev, A. Aspect, and J. P. Pocholle, Phys. Rev. Lett. 97, 093902 (2006).
    [CrossRef] [PubMed]
  11. V. N. Morozov, J. A. Neff, and H. Zhou, IEEE J. Quantum Electron. 31, 980 (1997).
    [CrossRef]
  12. A. Ouvrard, A. Garnache, L. Cerutti, F. Genty, and D. Romanini, IEEE Photon. Technol. Lett. 17, 2020 (2005).
    [CrossRef]

2007

S. Tamura, K. Inagaki, H. Noto, and T. Harayama, Proc. SPIE 6770, 677014 (2007).
[CrossRef]

2006

S. Schwartz, G. Feugnet, P. Bouyet, E. Larionstev, A. Aspect, and J. P. Pocholle, Phys. Rev. Lett. 97, 093902 (2006).
[CrossRef] [PubMed]

2005

A. Ouvrard, A. Garnache, L. Cerutti, F. Genty, and D. Romanini, IEEE Photon. Technol. Lett. 17, 2020 (2005).
[CrossRef]

2000

K. Taguchi, K. Fukushima, A. Ishitani, and M. Ikeda, Measurement 27, 251 (2000).
[CrossRef]

1999

P. J. R. Laybourn, M. Sorel, G. Giuliani, and S. Donati, Proc. SPIE 3620, 322 (1999).
[CrossRef]

M. Kuznetzov, F. Hakimi, R. Sprague, and A. Mooradian, IEEE J. Sel. Top. Quantum Electron. 5, 561 (1999).
[CrossRef]

1997

V. N. Morozov, J. A. Neff, and H. Zhou, IEEE J. Quantum Electron. 31, 980 (1997).
[CrossRef]

1988

A. F. Jezierski and P. J. R. Laybourn, Proc. IEEE 145, 17 (1988).

1986

R. M. Jopson, G. Eisenstein, M. S. Whalen, K. L. Hall, U. Koren, and J. R. Simpson, Appl. Phys. Lett. 48, 204 (1986).
[CrossRef]

1913

G. Sagnac, C. R. Acad. Sci. Ser. 157, 708 (1913).

Aronowitz, F.

F. Aronowitz, in Laser Applications I (Academic, 1971).

Aspect, A.

S. Schwartz, G. Feugnet, P. Bouyet, E. Larionstev, A. Aspect, and J. P. Pocholle, Phys. Rev. Lett. 97, 093902 (2006).
[CrossRef] [PubMed]

Bouyet, P.

S. Schwartz, G. Feugnet, P. Bouyet, E. Larionstev, A. Aspect, and J. P. Pocholle, Phys. Rev. Lett. 97, 093902 (2006).
[CrossRef] [PubMed]

Cerutti, L.

A. Ouvrard, A. Garnache, L. Cerutti, F. Genty, and D. Romanini, IEEE Photon. Technol. Lett. 17, 2020 (2005).
[CrossRef]

Donati, S.

P. J. R. Laybourn, M. Sorel, G. Giuliani, and S. Donati, Proc. SPIE 3620, 322 (1999).
[CrossRef]

Eisenstein, G.

R. M. Jopson, G. Eisenstein, M. S. Whalen, K. L. Hall, U. Koren, and J. R. Simpson, Appl. Phys. Lett. 48, 204 (1986).
[CrossRef]

Feugnet, G.

S. Schwartz, G. Feugnet, P. Bouyet, E. Larionstev, A. Aspect, and J. P. Pocholle, Phys. Rev. Lett. 97, 093902 (2006).
[CrossRef] [PubMed]

Fukushima, K.

K. Taguchi, K. Fukushima, A. Ishitani, and M. Ikeda, Measurement 27, 251 (2000).
[CrossRef]

Garnache, A.

A. Ouvrard, A. Garnache, L. Cerutti, F. Genty, and D. Romanini, IEEE Photon. Technol. Lett. 17, 2020 (2005).
[CrossRef]

Genty, F.

A. Ouvrard, A. Garnache, L. Cerutti, F. Genty, and D. Romanini, IEEE Photon. Technol. Lett. 17, 2020 (2005).
[CrossRef]

Giuliani, G.

P. J. R. Laybourn, M. Sorel, G. Giuliani, and S. Donati, Proc. SPIE 3620, 322 (1999).
[CrossRef]

Hakimi, F.

M. Kuznetzov, F. Hakimi, R. Sprague, and A. Mooradian, IEEE J. Sel. Top. Quantum Electron. 5, 561 (1999).
[CrossRef]

Hall, K. L.

R. M. Jopson, G. Eisenstein, M. S. Whalen, K. L. Hall, U. Koren, and J. R. Simpson, Appl. Phys. Lett. 48, 204 (1986).
[CrossRef]

Harayama, T.

S. Tamura, K. Inagaki, H. Noto, and T. Harayama, Proc. SPIE 6770, 677014 (2007).
[CrossRef]

Ikeda, M.

K. Taguchi, K. Fukushima, A. Ishitani, and M. Ikeda, Measurement 27, 251 (2000).
[CrossRef]

Inagaki, K.

S. Tamura, K. Inagaki, H. Noto, and T. Harayama, Proc. SPIE 6770, 677014 (2007).
[CrossRef]

Ishitani, A.

K. Taguchi, K. Fukushima, A. Ishitani, and M. Ikeda, Measurement 27, 251 (2000).
[CrossRef]

Jezierski, A. F.

A. F. Jezierski and P. J. R. Laybourn, Proc. IEEE 145, 17 (1988).

Jopson, R. M.

R. M. Jopson, G. Eisenstein, M. S. Whalen, K. L. Hall, U. Koren, and J. R. Simpson, Appl. Phys. Lett. 48, 204 (1986).
[CrossRef]

Koren, U.

R. M. Jopson, G. Eisenstein, M. S. Whalen, K. L. Hall, U. Koren, and J. R. Simpson, Appl. Phys. Lett. 48, 204 (1986).
[CrossRef]

Kuznetzov, M.

M. Kuznetzov, F. Hakimi, R. Sprague, and A. Mooradian, IEEE J. Sel. Top. Quantum Electron. 5, 561 (1999).
[CrossRef]

Larionstev, E.

S. Schwartz, G. Feugnet, P. Bouyet, E. Larionstev, A. Aspect, and J. P. Pocholle, Phys. Rev. Lett. 97, 093902 (2006).
[CrossRef] [PubMed]

Laybourn, P. J. R.

P. J. R. Laybourn, M. Sorel, G. Giuliani, and S. Donati, Proc. SPIE 3620, 322 (1999).
[CrossRef]

A. F. Jezierski and P. J. R. Laybourn, Proc. IEEE 145, 17 (1988).

Mooradian, A.

M. Kuznetzov, F. Hakimi, R. Sprague, and A. Mooradian, IEEE J. Sel. Top. Quantum Electron. 5, 561 (1999).
[CrossRef]

Morozov, V. N.

V. N. Morozov, J. A. Neff, and H. Zhou, IEEE J. Quantum Electron. 31, 980 (1997).
[CrossRef]

Neff, J. A.

V. N. Morozov, J. A. Neff, and H. Zhou, IEEE J. Quantum Electron. 31, 980 (1997).
[CrossRef]

Noto, H.

S. Tamura, K. Inagaki, H. Noto, and T. Harayama, Proc. SPIE 6770, 677014 (2007).
[CrossRef]

Ouvrard, A.

A. Ouvrard, A. Garnache, L. Cerutti, F. Genty, and D. Romanini, IEEE Photon. Technol. Lett. 17, 2020 (2005).
[CrossRef]

Pocholle, J. P.

S. Schwartz, G. Feugnet, P. Bouyet, E. Larionstev, A. Aspect, and J. P. Pocholle, Phys. Rev. Lett. 97, 093902 (2006).
[CrossRef] [PubMed]

Romanini, D.

A. Ouvrard, A. Garnache, L. Cerutti, F. Genty, and D. Romanini, IEEE Photon. Technol. Lett. 17, 2020 (2005).
[CrossRef]

Sagnac, G.

G. Sagnac, C. R. Acad. Sci. Ser. 157, 708 (1913).

Schwartz, S.

S. Schwartz, G. Feugnet, P. Bouyet, E. Larionstev, A. Aspect, and J. P. Pocholle, Phys. Rev. Lett. 97, 093902 (2006).
[CrossRef] [PubMed]

Siegman, A.

A. Siegman, Lasers (University Science Books, 1986).

Simpson, J. R.

R. M. Jopson, G. Eisenstein, M. S. Whalen, K. L. Hall, U. Koren, and J. R. Simpson, Appl. Phys. Lett. 48, 204 (1986).
[CrossRef]

Sorel, M.

P. J. R. Laybourn, M. Sorel, G. Giuliani, and S. Donati, Proc. SPIE 3620, 322 (1999).
[CrossRef]

Sprague, R.

M. Kuznetzov, F. Hakimi, R. Sprague, and A. Mooradian, IEEE J. Sel. Top. Quantum Electron. 5, 561 (1999).
[CrossRef]

Taguchi, K.

K. Taguchi, K. Fukushima, A. Ishitani, and M. Ikeda, Measurement 27, 251 (2000).
[CrossRef]

Tamura, S.

S. Tamura, K. Inagaki, H. Noto, and T. Harayama, Proc. SPIE 6770, 677014 (2007).
[CrossRef]

Whalen, M. S.

R. M. Jopson, G. Eisenstein, M. S. Whalen, K. L. Hall, U. Koren, and J. R. Simpson, Appl. Phys. Lett. 48, 204 (1986).
[CrossRef]

Zhou, H.

V. N. Morozov, J. A. Neff, and H. Zhou, IEEE J. Quantum Electron. 31, 980 (1997).
[CrossRef]

Appl. Phys. Lett.

R. M. Jopson, G. Eisenstein, M. S. Whalen, K. L. Hall, U. Koren, and J. R. Simpson, Appl. Phys. Lett. 48, 204 (1986).
[CrossRef]

C. R. Acad. Sci. Ser.

G. Sagnac, C. R. Acad. Sci. Ser. 157, 708 (1913).

IEEE J. Quantum Electron.

V. N. Morozov, J. A. Neff, and H. Zhou, IEEE J. Quantum Electron. 31, 980 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. Kuznetzov, F. Hakimi, R. Sprague, and A. Mooradian, IEEE J. Sel. Top. Quantum Electron. 5, 561 (1999).
[CrossRef]

IEEE Photon. Technol. Lett.

A. Ouvrard, A. Garnache, L. Cerutti, F. Genty, and D. Romanini, IEEE Photon. Technol. Lett. 17, 2020 (2005).
[CrossRef]

Measurement

K. Taguchi, K. Fukushima, A. Ishitani, and M. Ikeda, Measurement 27, 251 (2000).
[CrossRef]

Phys. Rev. Lett.

S. Schwartz, G. Feugnet, P. Bouyet, E. Larionstev, A. Aspect, and J. P. Pocholle, Phys. Rev. Lett. 97, 093902 (2006).
[CrossRef] [PubMed]

Proc. IEEE

A. F. Jezierski and P. J. R. Laybourn, Proc. IEEE 145, 17 (1988).

Proc. SPIE

S. Tamura, K. Inagaki, H. Noto, and T. Harayama, Proc. SPIE 6770, 677014 (2007).
[CrossRef]

P. J. R. Laybourn, M. Sorel, G. Giuliani, and S. Donati, Proc. SPIE 3620, 322 (1999).
[CrossRef]

Other

F. Aronowitz, in Laser Applications I (Academic, 1971).

A. Siegman, Lasers (University Science Books, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup. The overall perimeter is about 50 cm . The angle of incidence on the structure is 45°. Curve mirrors have a 100 mm radius of curvature, and the angle of incidence is only 17° to reduce astigmatism so that the diameter of the TEM 00 cavity mode is 100 μ m . The pumped area is also made circular by slanting the pump beams so that the projection compensates for their intrinsic noncircular shape. The impact point on one mirror is raised by 17 mm to create a 5° reciprocal rotation.

Fig. 2
Fig. 2

(a) Oscilloscope capture of the beat-note signal of the recombined beams and of the counterpropagating beams. The timescale is 25 μ s div and the rotation rate is 20 deg s . (b) Spectrum of recombined beams intensity at 20 deg s . The Sagnac peak is around 15 kHz . The other harmonics peaks are created by the small amplitude modulation induced by backscattering of the counterpropagating beams intensities at Sagnac frequency [10]. The peak at 200 kHz may be due to a resonance between mode competition in the laser and the feedback loop.

Fig. 3
Fig. 3

Experimental value of the beat frequency as a function of the rotation rate.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ f = 4 A λ P Ω ,
d = 1 1 + 4 L diff 2 k 2 sin 2 i ,

Metrics