Abstract

We investigate cavity-modulated resonant tunneling through a silver film with periodic grooves on both surfaces. A strip cavity embedded in the film affects tunneling frequencies via a coupling mode and waveguide mode. In the coupling mode, both the resonant tunneling through the gap between the groove and the cavity and the cavity itself form an entire resonant structure. In the waveguide mode, however, the cavity functions as a surface-plasmon waveguide. Hence, tunneling frequencies are close to resonant absorption frequencies of the groove structure and are irrelevant to cavity properties.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  3. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, Phys. Rep. 408, 131 (2005).
    [CrossRef]
  4. E. N. Economou, Phys. Rev. 182, 539 (1969).
    [CrossRef]
  5. D. Sarid, Phys. Rev. Lett. 47, 1927 (1981).
    [CrossRef]
  6. J. J. Burke, G. I. Stegeman, and T. Tamir, Phys. Rev. B 33, 5186 (1986).
    [CrossRef]
  7. G. I. Stegeman, R. F. Wallis, and A. A. Maradudin, Opt. Lett. 8, 386 (1983).
    [CrossRef] [PubMed]
  8. F. J. García-Vidal and J. B. Pendry, Phys. Rev. Lett. 77, 1163 (1996).
    [CrossRef] [PubMed]
  9. M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, and J. R. Sambles, Phys. Rev. Lett. 80, 5667 (1998).
    [CrossRef]
  10. W. C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, Phys. Rev. B 59, 12661 (1999).
    [CrossRef]
  11. W. C. Tan, T. W. Preist, and R. J. Sambles, Phys. Rev. B 62, 11134 (2000).
    [CrossRef]
  12. W. C. Liu and D. P. Tsai, Phys. Rev. B 65, 155423 (2002).
    [CrossRef]
  13. Y. C. Lan, Appl. Phys. Lett. 88, 071109 (2006).
    [CrossRef]
  14. J. D. Jackson, Classical Electrodynamics (Wiley, 1990).
  15. A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House, 2005).
  16. Y. C. Lan, Y. C. Chang, and P. H. Lee, Appl. Phys. Lett. 90, 171114 (2007).
    [CrossRef]

2007 (1)

Y. C. Lan, Y. C. Chang, and P. H. Lee, Appl. Phys. Lett. 90, 171114 (2007).
[CrossRef]

2006 (1)

Y. C. Lan, Appl. Phys. Lett. 88, 071109 (2006).
[CrossRef]

2005 (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, Phys. Rep. 408, 131 (2005).
[CrossRef]

2002 (1)

W. C. Liu and D. P. Tsai, Phys. Rev. B 65, 155423 (2002).
[CrossRef]

2000 (1)

W. C. Tan, T. W. Preist, and R. J. Sambles, Phys. Rev. B 62, 11134 (2000).
[CrossRef]

1999 (1)

W. C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, Phys. Rev. B 59, 12661 (1999).
[CrossRef]

1998 (1)

M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, and J. R. Sambles, Phys. Rev. Lett. 80, 5667 (1998).
[CrossRef]

1996 (1)

F. J. García-Vidal and J. B. Pendry, Phys. Rev. Lett. 77, 1163 (1996).
[CrossRef] [PubMed]

1986 (1)

J. J. Burke, G. I. Stegeman, and T. Tamir, Phys. Rev. B 33, 5186 (1986).
[CrossRef]

1983 (1)

1981 (1)

D. Sarid, Phys. Rev. Lett. 47, 1927 (1981).
[CrossRef]

1969 (1)

E. N. Economou, Phys. Rev. 182, 539 (1969).
[CrossRef]

Burke, J. J.

J. J. Burke, G. I. Stegeman, and T. Tamir, Phys. Rev. B 33, 5186 (1986).
[CrossRef]

Chang, Y. C.

Y. C. Lan, Y. C. Chang, and P. H. Lee, Appl. Phys. Lett. 90, 171114 (2007).
[CrossRef]

Economou, E. N.

E. N. Economou, Phys. Rev. 182, 539 (1969).
[CrossRef]

García-Vidal, F. J.

F. J. García-Vidal and J. B. Pendry, Phys. Rev. Lett. 77, 1163 (1996).
[CrossRef] [PubMed]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House, 2005).

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, 1990).

Lan, Y. C.

Y. C. Lan, Y. C. Chang, and P. H. Lee, Appl. Phys. Lett. 90, 171114 (2007).
[CrossRef]

Y. C. Lan, Appl. Phys. Lett. 88, 071109 (2006).
[CrossRef]

Lee, P. H.

Y. C. Lan, Y. C. Chang, and P. H. Lee, Appl. Phys. Lett. 90, 171114 (2007).
[CrossRef]

Liu, W. C.

W. C. Liu and D. P. Tsai, Phys. Rev. B 65, 155423 (2002).
[CrossRef]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, Phys. Rep. 408, 131 (2005).
[CrossRef]

G. I. Stegeman, R. F. Wallis, and A. A. Maradudin, Opt. Lett. 8, 386 (1983).
[CrossRef] [PubMed]

Pendry, J. B.

F. J. García-Vidal and J. B. Pendry, Phys. Rev. Lett. 77, 1163 (1996).
[CrossRef] [PubMed]

Preist, T. W.

W. C. Tan, T. W. Preist, and R. J. Sambles, Phys. Rev. B 62, 11134 (2000).
[CrossRef]

W. C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, Phys. Rev. B 59, 12661 (1999).
[CrossRef]

M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, and J. R. Sambles, Phys. Rev. Lett. 80, 5667 (1998).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

Sambles, J. R.

W. C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, Phys. Rev. B 59, 12661 (1999).
[CrossRef]

M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, and J. R. Sambles, Phys. Rev. Lett. 80, 5667 (1998).
[CrossRef]

Sambles, R. J.

W. C. Tan, T. W. Preist, and R. J. Sambles, Phys. Rev. B 62, 11134 (2000).
[CrossRef]

Sarid, D.

D. Sarid, Phys. Rev. Lett. 47, 1927 (1981).
[CrossRef]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, Phys. Rep. 408, 131 (2005).
[CrossRef]

Sobnack, M. B.

M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, and J. R. Sambles, Phys. Rev. Lett. 80, 5667 (1998).
[CrossRef]

Stegeman, G. I.

J. J. Burke, G. I. Stegeman, and T. Tamir, Phys. Rev. B 33, 5186 (1986).
[CrossRef]

G. I. Stegeman, R. F. Wallis, and A. A. Maradudin, Opt. Lett. 8, 386 (1983).
[CrossRef] [PubMed]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House, 2005).

Tamir, T.

J. J. Burke, G. I. Stegeman, and T. Tamir, Phys. Rev. B 33, 5186 (1986).
[CrossRef]

Tan, W. C.

W. C. Tan, T. W. Preist, and R. J. Sambles, Phys. Rev. B 62, 11134 (2000).
[CrossRef]

W. C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, Phys. Rev. B 59, 12661 (1999).
[CrossRef]

M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, and J. R. Sambles, Phys. Rev. Lett. 80, 5667 (1998).
[CrossRef]

Tsai, D. P.

W. C. Liu and D. P. Tsai, Phys. Rev. B 65, 155423 (2002).
[CrossRef]

Wallis, R. F.

Wanstall, N. P.

W. C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, Phys. Rev. B 59, 12661 (1999).
[CrossRef]

M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, and J. R. Sambles, Phys. Rev. Lett. 80, 5667 (1998).
[CrossRef]

Zayats, A. V.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, Phys. Rep. 408, 131 (2005).
[CrossRef]

Appl. Phys. Lett. (2)

Y. C. Lan, Appl. Phys. Lett. 88, 071109 (2006).
[CrossRef]

Y. C. Lan, Y. C. Chang, and P. H. Lee, Appl. Phys. Lett. 90, 171114 (2007).
[CrossRef]

Opt. Lett. (1)

Phys. Rep. (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, Phys. Rep. 408, 131 (2005).
[CrossRef]

Phys. Rev. (1)

E. N. Economou, Phys. Rev. 182, 539 (1969).
[CrossRef]

Phys. Rev. B (4)

J. J. Burke, G. I. Stegeman, and T. Tamir, Phys. Rev. B 33, 5186 (1986).
[CrossRef]

W. C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, Phys. Rev. B 59, 12661 (1999).
[CrossRef]

W. C. Tan, T. W. Preist, and R. J. Sambles, Phys. Rev. B 62, 11134 (2000).
[CrossRef]

W. C. Liu and D. P. Tsai, Phys. Rev. B 65, 155423 (2002).
[CrossRef]

Phys. Rev. Lett. (3)

F. J. García-Vidal and J. B. Pendry, Phys. Rev. Lett. 77, 1163 (1996).
[CrossRef] [PubMed]

M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, and J. R. Sambles, Phys. Rev. Lett. 80, 5667 (1998).
[CrossRef]

D. Sarid, Phys. Rev. Lett. 47, 1927 (1981).
[CrossRef]

Other (4)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

J. D. Jackson, Classical Electrodynamics (Wiley, 1990).

A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Structure and dimensions used in simulations.

Fig. 2
Fig. 2

Contour plot of transmission coefficients versus both cavity length and incident wave frequency for a grooved silver film with an embedded cavity ( W = 10 nm, ε r = 1.0 ). The white solid and dashed curves correspond to resonant frequencies of the strip cavity obtained by Eq. (1) for L eff = L + 45 nm and L eff = L + 13 nm , respectively. The black dotted and white dashed-dotted-dotted curves denote the frequencies of resonant absorption and tunneling, respectively, for a silver film with grooved structures.

Fig. 3
Fig. 3

Distributions of H z at frequencies of the (a) first and (b) third transmission maxima (coupling modes) for a cavity 100 nm long and 10 nm wide (Fig. 2).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

0 L eff k ( ω cavity ̱ res ) d y = n π ,
tanh [ k 2 ε 1 ( ω c ) 2 d 2 ] + ε 1 ε ( ω ) k 2 ε ( ω ) ( ω c ) 2 k 2 ε 1 ( ω c ) 2 = 0 ,

Metrics