Abstract

We demonstrate a highly tunable deep notch filter realized in a liquid-crystal photonic-bandgap (LCPBG) fiber. The filter is realized without inducing a long-period grating in the fiber but simply by filling a solid-core photonic-crystal fiber with a liquid crystal and exploiting avoided crossings within the bandgap of the LCPBG fiber. The filter is demonstrated experimentally and investigated using numerical simulations. A high degree of tuning of the spectral position of the deep notch is also demonstrated.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, Opt. Express 9, 698 (2001).
    [CrossRef] [PubMed]
  2. N. M. Litchinitser, S. C. Dunn, P. E. Steinvurzel, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, Opt. Express 12, 1540 (2005).
    [CrossRef]
  3. R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, in Optical Fiber Communication Conference (Optical Society of America, 2002), paper ThK3.
  4. T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, Opt. Express 11, 2589 (2003).
    [CrossRef] [PubMed]
  5. F. Du, Y. Q. Lu, and S. T. Wu, Appl. Phys. Lett. 85, 2181 (2004).
    [CrossRef]
  6. L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, D. S. Hermann, A. Anawati, M. D. Nielsen, and P. Bassi, Opt. Express 13, 7483 (2005).
    [CrossRef] [PubMed]
  7. T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. N Kruszelnicki, and J. Wojcik, Meas. Sci. Technol. 17, 985 (2006).
    [CrossRef]
  8. P. Steinvurzel, E. D. Moore, E. C. Magi, B. T. Kuhlmey, and B. J. Eggleton, Opt. Express 14, 3007 (2006).
    [CrossRef] [PubMed]
  9. D. Noordegraaf, L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, Opt. Express 15, 7901 (2007).
    [CrossRef] [PubMed]
  10. S. G. Johnson and J. D. Joannopoulos, Opt. Express 8, 173 (2001).
    [CrossRef] [PubMed]
  11. G. Tartarini, M. Pansera, T. T. Alkeskjold, A. Bjarklev, and P. Bassi, J. Lightwave Technol. 25, 2522 (2007).
    [CrossRef]
  12. G. Tartarini, R. Stolte, and H. Renner, Opt. Commun. 253, 109 (2005).
    [CrossRef]
  13. J. Li, S. Gauza, and S. T. Wu, Appl. Phys. Lett. 96, 19 (2004).

2007 (2)

2006 (2)

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. N Kruszelnicki, and J. Wojcik, Meas. Sci. Technol. 17, 985 (2006).
[CrossRef]

P. Steinvurzel, E. D. Moore, E. C. Magi, B. T. Kuhlmey, and B. J. Eggleton, Opt. Express 14, 3007 (2006).
[CrossRef] [PubMed]

2005 (3)

2004 (2)

J. Li, S. Gauza, and S. T. Wu, Appl. Phys. Lett. 96, 19 (2004).

F. Du, Y. Q. Lu, and S. T. Wu, Appl. Phys. Lett. 85, 2181 (2004).
[CrossRef]

2003 (1)

2001 (2)

Alkeskjold, T. T.

Anawati, A.

Bassi, P.

Bise, R. T.

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, in Optical Fiber Communication Conference (Optical Society of America, 2002), paper ThK3.

Bjarklev, A.

Broeng, J.

Dabrowski, R.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. N Kruszelnicki, and J. Wojcik, Meas. Sci. Technol. 17, 985 (2006).
[CrossRef]

de Sterke, C. M.

Domanski, A. W.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. N Kruszelnicki, and J. Wojcik, Meas. Sci. Technol. 17, 985 (2006).
[CrossRef]

Du, F.

F. Du, Y. Q. Lu, and S. T. Wu, Appl. Phys. Lett. 85, 2181 (2004).
[CrossRef]

Dunn, S. C.

Eggleton, B. J.

Ertman, S.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. N Kruszelnicki, and J. Wojcik, Meas. Sci. Technol. 17, 985 (2006).
[CrossRef]

Gauza, S.

J. Li, S. Gauza, and S. T. Wu, Appl. Phys. Lett. 96, 19 (2004).

Hale, A.

Hermann, D. S.

Joannopoulos, J. D.

Johnson, S. G.

Kerbage, C.

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, Opt. Express 9, 698 (2001).
[CrossRef] [PubMed]

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, in Optical Fiber Communication Conference (Optical Society of America, 2002), paper ThK3.

Kranz, K. S.

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, in Optical Fiber Communication Conference (Optical Society of America, 2002), paper ThK3.

Kuhlmey, B. T.

Lægsgaard, J.

Larsen, T. T.

Lesiak, P.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. N Kruszelnicki, and J. Wojcik, Meas. Sci. Technol. 17, 985 (2006).
[CrossRef]

Li, J.

J. Li, S. Gauza, and S. T. Wu, Appl. Phys. Lett. 96, 19 (2004).

Litchinitser, N. M.

Lu, Y. Q.

F. Du, Y. Q. Lu, and S. T. Wu, Appl. Phys. Lett. 85, 2181 (2004).
[CrossRef]

Magi, E. C.

McPhedran, R. C.

Moore, E. D.

N Kruszelnicki, E.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. N Kruszelnicki, and J. Wojcik, Meas. Sci. Technol. 17, 985 (2006).
[CrossRef]

Nielsen, M. D.

Noordegraaf, D.

Pansera, M.

Renner, H.

G. Tartarini, R. Stolte, and H. Renner, Opt. Commun. 253, 109 (2005).
[CrossRef]

Riishede, J.

Rindorf, L.

Scolari, L.

Steinvurzel, P.

Steinvurzel, P. E.

Stolte, R.

G. Tartarini, R. Stolte, and H. Renner, Opt. Commun. 253, 109 (2005).
[CrossRef]

Szaniawska, K.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. N Kruszelnicki, and J. Wojcik, Meas. Sci. Technol. 17, 985 (2006).
[CrossRef]

Tartarini, G.

Trevor, D. J.

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, in Optical Fiber Communication Conference (Optical Society of America, 2002), paper ThK3.

Westbrook, P. S.

White, T. P.

Windeler, R. S.

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, Opt. Express 9, 698 (2001).
[CrossRef] [PubMed]

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, in Optical Fiber Communication Conference (Optical Society of America, 2002), paper ThK3.

Wojcik, J.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. N Kruszelnicki, and J. Wojcik, Meas. Sci. Technol. 17, 985 (2006).
[CrossRef]

Wolinski, T. R.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. N Kruszelnicki, and J. Wojcik, Meas. Sci. Technol. 17, 985 (2006).
[CrossRef]

Wu, S. T.

J. Li, S. Gauza, and S. T. Wu, Appl. Phys. Lett. 96, 19 (2004).

F. Du, Y. Q. Lu, and S. T. Wu, Appl. Phys. Lett. 85, 2181 (2004).
[CrossRef]

Appl. Phys. Lett. (2)

F. Du, Y. Q. Lu, and S. T. Wu, Appl. Phys. Lett. 85, 2181 (2004).
[CrossRef]

J. Li, S. Gauza, and S. T. Wu, Appl. Phys. Lett. 96, 19 (2004).

J. Lightwave Technol. (1)

Meas. Sci. Technol. (1)

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. N Kruszelnicki, and J. Wojcik, Meas. Sci. Technol. 17, 985 (2006).
[CrossRef]

Opt. Commun. (1)

G. Tartarini, R. Stolte, and H. Renner, Opt. Commun. 253, 109 (2005).
[CrossRef]

Opt. Express (7)

Other (1)

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, in Optical Fiber Communication Conference (Optical Society of America, 2002), paper ThK3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) SEM image of PCF end facet. (b) Splay alignment of the LC. (c) Setup used to measure the transmission of the LCPBG fiber.

Fig. 2
Fig. 2

Measured and simulated results at a temperature of 30 ° C . (a) Measured transmission spectrum of the LC-filled fiber. (b) Simulated effective mode indices of modes in the high-index LC-filled rods (solid curves) and the core-guided mode (dashed curve). The avoided crossing of the core mode is shown in the center of the transmission band. (c) Simulated transmission spectrum of the LC-filled fiber. Both coupling and propagation loss are taken into account. Inset shows the dominant x component of the electric field of the fundamental core mode at a wavelength of 1.35 μ m .

Fig. 3
Fig. 3

(a) Transmission spectrum of the LC filled fiber at temperatures of 30 ° C and 65 ° C . (b) Spectral position of the loss dip as a function of temperature. A tuning of 2.5 nm ° C is achieved over 124 nm . Inset, n o and n e of the LC MDA-00-3969, as a function of temperature, at a wavelength of 450 nm. The clearing point of the LC is 106 ° C .

Metrics