Abstract

We describe a novel mechanism of pulse shortening in a Q-switched laser induced by the gain compression effect under strong pumping conditions. The pulse shortening requires a large variation of the gain excursion during the saturation process and benefits from the large volume of the gain medium. The effect has been experimentally demonstrated using a passive Q-switched TmHo-doped fiber laser that shows gain-induced pulse compression from 800ns down to 160ns when the pump threshold is exceeded by 15 times.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. E. Siegman, Lasers (University Science, 1986).
  2. J. J. Zayhowski and C. Dill III, Opt. Lett. 19, 1427 (1994).
    [CrossRef] [PubMed]
  3. G. J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, J. Opt. Soc. Am. B 16, 376 (1999).
    [CrossRef]
  4. J. J. Zayhowski and P. L. Kelley, IEEE J. Quantum Electron. 27, 2220 (1991).
    [CrossRef]
  5. J. J. Zayhowski and P. L. Kelley, IEEE J. Quantum Electron. 29, 1239 (1993).
  6. J. J. Degnan, IEEE J. Quantum Electron. 31, 1890 (1995).
    [CrossRef]
  7. T. Hakulinen and O. G. Okhotnikov, Opt. Lett. 32, 2677 (2007).
    [CrossRef] [PubMed]
  8. G. Xiao and M. Bass, IEEE J. Quantum Electron. 33, 41 (1997).
    [CrossRef]
  9. T. Hakulinen, R. Herda, and O. G. Okhotnikov, IEEE Photon. Technol. Lett. 19, 333 (2007).
    [CrossRef]
  10. S. Kivistö, T. Hakulinen, M. Guina, and O. G. Okhotnikov, IEEE Photon. Technol. Lett. 19, 934 (2007).
    [CrossRef]

2007 (3)

T. Hakulinen and O. G. Okhotnikov, Opt. Lett. 32, 2677 (2007).
[CrossRef] [PubMed]

T. Hakulinen, R. Herda, and O. G. Okhotnikov, IEEE Photon. Technol. Lett. 19, 333 (2007).
[CrossRef]

S. Kivistö, T. Hakulinen, M. Guina, and O. G. Okhotnikov, IEEE Photon. Technol. Lett. 19, 934 (2007).
[CrossRef]

1999 (1)

1997 (1)

G. Xiao and M. Bass, IEEE J. Quantum Electron. 33, 41 (1997).
[CrossRef]

1995 (1)

J. J. Degnan, IEEE J. Quantum Electron. 31, 1890 (1995).
[CrossRef]

1994 (1)

1993 (1)

J. J. Zayhowski and P. L. Kelley, IEEE J. Quantum Electron. 29, 1239 (1993).

1991 (1)

J. J. Zayhowski and P. L. Kelley, IEEE J. Quantum Electron. 27, 2220 (1991).
[CrossRef]

Bass, M.

G. Xiao and M. Bass, IEEE J. Quantum Electron. 33, 41 (1997).
[CrossRef]

Braun, B.

Degnan, J. J.

J. J. Degnan, IEEE J. Quantum Electron. 31, 1890 (1995).
[CrossRef]

Dill, C.

Fluck, R.

Gini, E.

Guina, M.

S. Kivistö, T. Hakulinen, M. Guina, and O. G. Okhotnikov, IEEE Photon. Technol. Lett. 19, 934 (2007).
[CrossRef]

Hakulinen, T.

T. Hakulinen, R. Herda, and O. G. Okhotnikov, IEEE Photon. Technol. Lett. 19, 333 (2007).
[CrossRef]

S. Kivistö, T. Hakulinen, M. Guina, and O. G. Okhotnikov, IEEE Photon. Technol. Lett. 19, 934 (2007).
[CrossRef]

T. Hakulinen and O. G. Okhotnikov, Opt. Lett. 32, 2677 (2007).
[CrossRef] [PubMed]

Herda, R.

T. Hakulinen, R. Herda, and O. G. Okhotnikov, IEEE Photon. Technol. Lett. 19, 333 (2007).
[CrossRef]

Keller, U.

Kelley, P. L.

J. J. Zayhowski and P. L. Kelley, IEEE J. Quantum Electron. 29, 1239 (1993).

J. J. Zayhowski and P. L. Kelley, IEEE J. Quantum Electron. 27, 2220 (1991).
[CrossRef]

Kivistö, S.

S. Kivistö, T. Hakulinen, M. Guina, and O. G. Okhotnikov, IEEE Photon. Technol. Lett. 19, 934 (2007).
[CrossRef]

Moser, M.

Okhotnikov, O. G.

T. Hakulinen and O. G. Okhotnikov, Opt. Lett. 32, 2677 (2007).
[CrossRef] [PubMed]

S. Kivistö, T. Hakulinen, M. Guina, and O. G. Okhotnikov, IEEE Photon. Technol. Lett. 19, 934 (2007).
[CrossRef]

T. Hakulinen, R. Herda, and O. G. Okhotnikov, IEEE Photon. Technol. Lett. 19, 333 (2007).
[CrossRef]

Paschotta, R.

Siegman, A. E.

A. E. Siegman, Lasers (University Science, 1986).

Spühler, G. J.

Xiao, G.

G. Xiao and M. Bass, IEEE J. Quantum Electron. 33, 41 (1997).
[CrossRef]

Zayhowski, J. J.

J. J. Zayhowski and C. Dill III, Opt. Lett. 19, 1427 (1994).
[CrossRef] [PubMed]

J. J. Zayhowski and P. L. Kelley, IEEE J. Quantum Electron. 29, 1239 (1993).

J. J. Zayhowski and P. L. Kelley, IEEE J. Quantum Electron. 27, 2220 (1991).
[CrossRef]

Zhang, G.

IEEE J. Quantum Electron. (4)

J. J. Zayhowski and P. L. Kelley, IEEE J. Quantum Electron. 27, 2220 (1991).
[CrossRef]

J. J. Zayhowski and P. L. Kelley, IEEE J. Quantum Electron. 29, 1239 (1993).

J. J. Degnan, IEEE J. Quantum Electron. 31, 1890 (1995).
[CrossRef]

G. Xiao and M. Bass, IEEE J. Quantum Electron. 33, 41 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

T. Hakulinen, R. Herda, and O. G. Okhotnikov, IEEE Photon. Technol. Lett. 19, 333 (2007).
[CrossRef]

S. Kivistö, T. Hakulinen, M. Guina, and O. G. Okhotnikov, IEEE Photon. Technol. Lett. 19, 934 (2007).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (2)

Other (1)

A. E. Siegman, Lasers (University Science, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Measured Q-switched pulse durations for different pump powers fitted according to Eq. (8) and oscilloscope trace of a 170 ns Q-switched pulse for the laser highly pumped above the threshold, 15 × P threshold (inset), (b) Q-switched pulse width obtained from numerical simulation using the rate Eqs. (1, 3) (scatter plot) in the near threshold limit (dashed curve) assuming Δ g = 2 q 0 and estimated with Eq. (8) (solid curve). The value of the pulse duration near the laser threshold without gain compression effect is shown by the dashed curve.

Fig. 2
Fig. 2

Simulation of Q-switching illustrated with temporal evolution of cavity gain/loss and output power during Q-switched pulse formation. Pumping condition corresponds to operation (a) close to lasing threshold g 0 = 1.1 ( q 0 + l ) and (b) far above the lasing threshold g 0 = 25 ( q 0 + l ) . The intracavity power is shown both in linear and dBm scale.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

d g ( t ) d t = g ( t ) g 0 τ g g P ( t ) E sat , g ,
d q ( t ) d t = q ( t ) q 0 τ a q P ( t ) E sat , a ,
d P d t = ( g l q ) P T r ,
g ( t ) = [ l + q 0 g 0 ] exp ( t τ g ) + g 0 ,
t = 2 τ g T r g 0 l q 0 log ( g 0 E sat , g τ g P 0 ) .
g i = l + q 0 + 2 T r τ g g 0 l q 0 log ( g 0 E sat , g τ g P 0 ) .
Δ g = 2 q 0 + 2 2 T r τ g g 0 l q 0 log ( E sat , g τ g P 0 ) = 2 ( q 0 + A P P threshold 1 )
A = 2 T r τ g log ( E sat , g τ g P 0 ) l + q 0 , P P threshold = g 0 l + q 0 .
τ = 7.04 T r Δ g = 3.52 T r q 0 + A P P threshold 1 .

Metrics