Abstract

We show that optically induced photonic lattices in a nonconventionally biased photorefractive crystal can support the formation of discrete and gap solitons owing to a mechanism that differs from the conventional screening effect. Both the bias direction and the lattice orientation can dramatically influence the nonlinear beam-propagation dynamics. We demonstrate a transition from self-focusing to -defocusing and from discrete to gap solitons solely by adjusting the optical-beam orientation.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. D. N. Christodoulides and R. I. Joseph, Opt. Lett. 13, 794 (1988).
    [CrossRef] [PubMed]
  2. H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, Phys. Rev. Lett. 81, 3383 (1998).
    [CrossRef]
  3. J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, Phys. Rev. Lett. 90, 023902 (2003).
    [CrossRef] [PubMed]
  4. J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, Nature 422, 147 (2003).
    [CrossRef] [PubMed]
  5. D. Neshev, E. Ostrovskaya, Y. Kivshar, and W. Królikowski, Opt. Lett. 28, 710 (2003).
    [CrossRef] [PubMed]
  6. H. Martin, E. D. Eugenieva, Z. Chen, and D. N. Christodoulides, Phys. Rev. Lett. 92, 123902 (2004).
    [CrossRef] [PubMed]
  7. D. Neshev, A. A. Sukhorukov, B. Hanna, W. Królikowski, and Y. Kivshar, Phys. Rev. Lett. 93, 083905 (2004).
    [CrossRef] [PubMed]
  8. I. Makasyuk, Z. Chen, and J. Yang, Phys. Rev. Lett. 96, 223903 (2006).
    [CrossRef] [PubMed]
  9. T. Schwartz, G. Bartal, S. Fishman, and M. Segev, Nature 446, 52 (2007).
    [CrossRef] [PubMed]
  10. P. Zhang, J. Zhao, C. Lou, X. Tan, Y. Gao, Q. Liu, D. Yang, J. Xu, and Z. Chen, Opt. Express 15, 536 (2007).
    [CrossRef] [PubMed]
  11. P. Zhang, Y. Ma, J. Zhao, D. Yang, and H. Xu, Appl. Opt. 45, 2273 (2006).
    [CrossRef] [PubMed]
  12. A. A. Zozulya and D. Z. Anderson, Phys. Rev. A 51, 1520 (1995).
    [CrossRef] [PubMed]

2007

2006

2004

H. Martin, E. D. Eugenieva, Z. Chen, and D. N. Christodoulides, Phys. Rev. Lett. 92, 123902 (2004).
[CrossRef] [PubMed]

D. Neshev, A. A. Sukhorukov, B. Hanna, W. Królikowski, and Y. Kivshar, Phys. Rev. Lett. 93, 083905 (2004).
[CrossRef] [PubMed]

2003

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, Phys. Rev. Lett. 90, 023902 (2003).
[CrossRef] [PubMed]

J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, Nature 422, 147 (2003).
[CrossRef] [PubMed]

D. Neshev, E. Ostrovskaya, Y. Kivshar, and W. Królikowski, Opt. Lett. 28, 710 (2003).
[CrossRef] [PubMed]

1998

H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, Phys. Rev. Lett. 81, 3383 (1998).
[CrossRef]

1995

A. A. Zozulya and D. Z. Anderson, Phys. Rev. A 51, 1520 (1995).
[CrossRef] [PubMed]

1988

Appl. Opt.

Nature

J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, Nature 422, 147 (2003).
[CrossRef] [PubMed]

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, Nature 446, 52 (2007).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. A

A. A. Zozulya and D. Z. Anderson, Phys. Rev. A 51, 1520 (1995).
[CrossRef] [PubMed]

Phys. Rev. Lett.

H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, Phys. Rev. Lett. 81, 3383 (1998).
[CrossRef]

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, Phys. Rev. Lett. 90, 023902 (2003).
[CrossRef] [PubMed]

H. Martin, E. D. Eugenieva, Z. Chen, and D. N. Christodoulides, Phys. Rev. Lett. 92, 123902 (2004).
[CrossRef] [PubMed]

D. Neshev, A. A. Sukhorukov, B. Hanna, W. Królikowski, and Y. Kivshar, Phys. Rev. Lett. 93, 083905 (2004).
[CrossRef] [PubMed]

I. Makasyuk, Z. Chen, and J. Yang, Phys. Rev. Lett. 96, 223903 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Geometry of the coordinate system; (b) K ( θ ) versus θ e and θ I ; (c) K ( θ ) versus θ e at θ I = 45 ° (top) and K ( θ ) versus θ I at θ e = 90 ° (bottom); (d) distributions of δ n .

Fig. 2
Fig. 2

Linear (left) and nonlinear (middle) beam evolutions with θ I = 45 ° (top) and 45 ° (bottom) at E 0 c . The curves in (a) and (b) depict beam profiles at z = 1 cm . The right column corresponds to the interferogram of the nonlinear output beam at z = 1 cm .

Fig. 3
Fig. 3

(a) and (c) bandgap structures (bands are shaded) and soliton peak intensity curves; (b) and (d) soliton profiles found at the circles marked in (a) and (c). The top and the bottom rows are for the cases with θ I = 45 ° and 45 ° at E 0 c , respectively.

Fig. 4
Fig. 4

Experimental results. (a) and (b) Input and linear output probe beam pattern without lattice; (c) lattice beam pattern; (d) geometry of beam orientation; (e)–(f) probe-beam output pattern for (1) discrete diffraction, (2) self-trapping, (3) interference of soliton output, and (4) nonlinear output without lattice for (e) θ I = 45 ° and (f) 45 ° at E 0 c , respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

( z i 2 2 y 2 ) B ( y , z ) = i [ E 0 K ( θ ) I l + B ( y , z ) 2 1 + I l + B ( y , z ) 2 E 0 cos θ e ] B ( y , z ) ,
β b ( y ) 1 2 d 2 b ( y ) d y 2 = [ E 0 K ( θ ) I l + b ( y ) 2 1 + I l + b ( y ) 2 E 0 cos θ e ] b ( y ) .

Metrics